15-123
Systems Skills in C and Unix

%estions? : ;

* Why do we need hashing?
Fask (0(1)) fwa ¢ nserl
* Can there be entries in the hash table with same key?
No
» Can there be entries in the hash table with same value?

s

® Can there be two entries in the hash table with same
key and same value?

NO

Questions

* What would be a good table size to select given n keys
to insert

Closar P (/)
e Whatisload factor? % ¢aten /
= m ?/ DCCVfLL(F(qm ‘"_F(bq
* What would be a good load factor?
% 5
* What would you do if the load factor is too high?

V
KX&W\&\‘ bak heash ’J[W' d‘a“;

! uestions =

q

* how would you select a hash function?

heswte "/ g 3¢
* How do you know if your hash function is a good one?

(w(C\M‘" oL S

* Is it possible to pick a function that is 1-1? How difficult
is it to find one?

- g
0" —

P

What is a collision

* A collision occurs when two keys map to the same
location

* Why do collisions occur?
e Mainly due to bad hash functions

e Eg: imagine hashing 1000 keys, where each key is on
average 6 characters long, using a simple function like
H(s) = Y characters, and a table size of at least 1001, how
many collisions can be expected per cell (collisions occur
only when the cell is taken and another key wants to
map into the same place)

P

How to resolve collisions

eparé‘wfé Chaining

As o+

fooer bar

with

long

keyet+s

link o ur| o=

list

int o>

chare—topen

hash

find

in e+

ontoe—types—p

queue

el Ll Lo
o= aele|N|o|n|s(win)=|o

tester>

fail

IRl

info

P

Separate Chaining

* Pros
e No probing necessary

« Each node has a place in the same hashcode

e List gets never full

 Performance can go down though

* Cons
e Complicated implementation of array of linked lists
e Still lots of collisions can create a “bad” hash table

* Need to keep the load factor reasonably under control

* If load factor becomes too large, rehash

Rehash

* The process of creating a larger table to distribute the
keys better

Implementing a genéric hash table

e Library design considerations
e hash_node - a node that contains (key, value, next)

o A struct that contains
» Array of hashnode*’s
 Size of the table
« Function pointers

- equal - compare two elems and return success (equal) or
failure(not equal)

- free_key, free_value

Client considerations

® Must provide a hash function

e It is also possible to provide a generic hash function like
java API

* Must allocate memory for key and value (if necessary)

plementation

hashlib.h

j(L »\as‘ol"gc

\ Acc Ciénk heihlie . ©

Data Structures

typedef struct HASH NODE ({
void *key;
void *value;
struct HASH NODE *next;
} hash node;

typedef struct hashtable {
hash node **table;
int size;
int (*equal) (const void*, const void¥) ;
void (*free_key)(void*);
void (*free_value)(void*);
} hashtable;

|brary Interface

ht_init (hes\tehex ht it s3)

ht_retrieve (b\ Shis bt
ht_rehash { has N *Wr
)

ht_set functions
e equal, free_key, free_value

\/O(&&Kzzj

\V\\~ '\(uyu))

-)
ht_insert (ka&kﬁtq xk\») U oldhse (@.3 Vord velug \nE COJL)

i/
Vo, sex V‘L(“')

Client implementation

int hashcode(void* s, int m) {
/* this takes a pointer to a key and
computes the hash code. m is string size
=
J

P

Code Examples

