Systems Skills in C and Unix

Pointers are challenging

R

“Learning Objectives |

o At the end of this lecture
¢ Understand the relation between 1D Arrays and Pointers
¢ Understand pointer arithmetic with arrays
e Understand the common errors introduced by pointers

¢ Understand how to use a debugger to isolate and fix
critical errors

1/27/2011

e

Why pointers cause err

* Many reasons
¢ Dereferencinga pointer that has not being initialized
\ S
(ﬂ Chay D Aoy ot 5
o B by

Szmalloe(s);
n Dereferer\cing a pointer that is pointing to an illegal
0

plree)
prasa(L wph);

Xz

In% X3
i rv-i)()

Pointers introduce hard to catch
errors

GDB
GNU Debugger

e

GDB
* GNU debugger
¢ Compile code that can run in debug mode
» gee -ggdb main.c
e Start the debugger
« gdb a.out
¢ Place some break points
+ gdb > break 1
¢ Run the program with the command line arguments
» gdb>run data.txt
e More commands later...

~More Dangerous code
fOO(int . - P""_.&b@)}) toes nab Grary
int X = n*n; .
returnQ P kf(“j.d‘} *f“)-’ h\] oresy
} W
oY
int* foo(intn) { \"" Low 0
intx = 1‘1*1‘1; ‘ \(‘
} returv J):‘L:"\»&
g
i

m

* Defining an array
e int A[10] = static array of 10 int’s
e char* A[10] = staticarray of 10 char *’s
e int* A[10] = static array of 10 int *’s
° Array Memory allocation
e Allocates a Contiguous block of memory

e Memory allocation and deallocation is controlled by
compiler
¢ When does a static array gets deallocated?

{"ﬁﬁbm
}=a

e

5SEGV

© GDB typically produces this trace

 Asignal sent to a process when an illegal memory
access or segmentation fault has occurred
© SIGSEGV is defined in the header file signal.h
© SIGSEGV terminates the process
e createsa “core dump” and write to a core file to aid
debugging
e core file contains the state of the memory at the time of
termination

SIGSEGV SEGV_MAPERR
SEGV_ACCERR

Address not mapped to object.
Invalid permissions for mapped object.

1/27/2011

Arrays

e %

filays and Politers 1

* The name of the array\A)(or the value it holds) is a
constant pointer to the first element of the array.
That’sis A = anything; is illegal

* The value of A (where the array begins) can be printed
using

« int A[10]; printf(“%x”, A); l;\:" *fﬁf j
° Dangers of Array access using pointers o A—M)
e C Arrays are/fiot bounded \;)6 \

¢ Access of memory not allocated Pk.r =S

)
« That is, one can access memory not allocated using po\ijte/rr.
+ may cause segmentation fault \‘\
M‘J = P&L

« Unpredictable program behavior
TR R .

“Array index arithmetic
© The value of A is the address of the first element of the
array

* Thevalue ofs the address of A[i] = &Ali]

* isan address that is calculated by adding i*sizeof(type)
toA e

© The value of {\)is an address

KJ\)
 The type of A is a const pointer (const int*)

(25

"Aceessing ?
[]is an operator
argumentsto [] are A and index
A[i] gives access to entry that is

e ey (d) bytes away from A[O]
How does A[i] calculated?

Al = *G\ﬂ)

ocating Array memory dynamically

/* does not allocate any memory */

=(int*)malloc(n*sizeof(int

o /* allocates memory to hold n mts*/

 What is the difference-betweer st = ¢
U @ = malloc(n*sizeof(int));
e Initializing\Arrays
e for (1=0; i<n; T 5‘7\ a(h' (=4 &1‘
N
< M"“‘N)
dv W
vk g ot £ e apr=mnacls)
scop y —

1/27/2011

omputing addresses
Fﬁ)
.
¢ ¢5 ol
p ’S:I ! F1 FD Io(
Ghar) Als)
! /| ' | |
Fi Fs £ FD o
charA[s]

f\ G e £
Calculate the addresses of each element

"Kllocating aq&?eallocating Memory

Mman Mallec
#include <stdlib.}> 7 . o
|-u*\’lr‘
void *balloc(siz¢ t , size_t size);
malloc (sizb t) :
Toid fres(void wptr): —— dloes wt inchabny

void *realloc(void *ptr, size t size) m
L)
e phes(dmelie () | J
=0be(, . \,91(\;;))

Resmng Arrays
W @ Mallec Q’\ * 34 (hf))
|

P ?‘fl— ch@,»nuf;.,ﬁxp))
L | | fraa(p¥)
i p*z)

I N O U NN
(P2 == Nuwl)

Alongs Joi fic W pois

)

1/27/2011

"Eﬁar[j m

© There is a difference between

e char wordi[10]
e char* word2

Strings

* Look at the size of each of the above
e sizeof(wordi)
« sizeof(word2)

 char*’s are big part of segmentation faults

e

eégmentation Faults

. : . faults? Explain...
¢ Asegmentation fault is a memory access violation that can
occur during the execution of a program © Assume we declare
e intAf10]; Af10] = 23; e char* word; char wordz[10];
« char* word; printf(“%c”, word[o]);

* Consider the following
e intx=10; scanf(“%d’, x);

e FILE* fp = fopen(“filename”, “r”); fscanf(fp,"%d”,&num); * strepy(word, “guna’);
¢ Dereferencing a pointer that is not initialized * strepy(wordz, “guna”);
* How to fix a segmentation fault * word = “guna’;
* Need to isolate the code that possibly causes the memory e wordz2 = “guna”;
access violation
* Two ways

« Use a debugger (gdb)
- Comment out statements one by one and isolate the problem

T .

e %

== (_éq—" =
rrays of char *’s rray of char *’s

© An array of char* can be defined as follows o char* A[n]

* char* Aln; ¢ Allocates memory required for n char *’s

T T T e R ¢ Does th allocate fn‘er‘no.ry for the strings
e Locationsare not initialized by default
* How would you initialize the locations? Two ways

§ Blthestble thenfodo * Make all locations NULL

» Alo] =“guna”;
» What can go wrong here?

e Assign memory to hold strings in each location

“Reading words

o char* A[n];
¢ Does not allocate memory for Strings
o Allocate memory for each location
e for (int i=o; i<n; i++)
Ali] = malloc(strlen(word)+1)

/* just allocate memory required for the current word*/

P———

un time errors

A) dereference of uninitialized or otherwise invalid pointer
B} insufficient (or none) allocated storage for operation

C) storage used after free

D) allocation freed repeatedly

E} free ofunallocated or potentially storage

F) free of stack space

G) return, directly or via argument, of pointer to local variable
H) dereference of wrong type

I} assignment of incompatible types

J) program logic confuses pointer and referenced type
K} incorect use of pointer arithmetic

L) array index out of bounds

lG) return, directly or via argument, of pointer to local variable l
H) dereference of wrong type

[) assignment of incompatible types

J) program logic confuses pointer and referenced type
K) incorrect use of pointer arithmetic

L) array index out of bounds

Dealing with runtime errors

1/27/2011

= B) insufficient (or none) allocated storage for operation

A) dereference of uninitialized or otherwise invalid pointer

C) storage used after free

D) allocation freed repeatedly

E) free of unallocated or potentially storage
F) free of stack space

e %

rocess of debugging

* Need to develop a disciplined approach to
programming
* Best way to avoid errors is not to introduce in the first
place
* When errors occur, find out where the program
crashes
» Sometimes with printf statements (be aware of buffer)
e Most times printf’s cannot tell us much
* Ideal way is to use a debugger

e A program that can run your program step-by-step and
provide an execution trace

1/27/2011

T —e

“Debugging Stratzgies

asic GDB commands

r(un) [arglist]Runs your program in GDB with optional argument list
b(reak) [file:]function/linePutsa breakpoint in that will stop your o If the whole program does not run, comment out some
)

program when it is reached f 3 d i bify 3 h b
c(ontinue)Resumes execution of your program after it is stopped l.ll’l.CtIOIlS and try to 1solate the function that may be
giving errors

n(ext)When stopped, runs the next line of code, stepping over functions
s(tep)When stopped, runs the next line of code, stepping into functions ° Identify the error with gdb

q(‘."t)Ems GPB S A * Fix the error and try the next function
print expr Prints out the given expression
display var Displays the given variable at every step of execution * Once all functions are fixed, try running with different
1(ist)Lists source code data files

help [command]Gives you help with a specified command

bt Gives a backtrace (Lists the call stack with variables passed in)
MOREat: mangdb

e

“Examples

int main(int argg, char* argvll){

int main(int azge, char* azgvll)(intf("AldAn", INT MAX):
int = : z P
s . int n = INT_MAX;
printf("Please enter an integer : "); ; ex

scanf("sdn K i 0;
Brintf("the integer entered was %d \n", x); e (i<n
return EXIT_SUCCESS; Alil =

, e s Dealing with Memory Leaks

return EXIT_SUCCESS;

int main(int argg, char* argw(l){
FILE* fp = fopen(“argylll”, “r”);
char* word:
while (£scanf (fp, ”3s/.mord)>0)
[S

zeturn 07

