
1/27/2011

1

15-123

Systems Skills in C and Unix

Learning Objectives
� At the end of this lecture

� Understand the relation between 1D Arrays and Pointers

� Understand pointer arithmetic with arrays

� Understand the common errors introduced by pointers

� Understand how to use a debugger to isolate and fix
critical errors

Pointers are challenging
Pointers introduce hard to catch

errors

Why pointers cause errors?
� Many reasons

� Dereferencing a pointer that has not being initialized

� Dereferencing a pointer that is pointing to an illegal
memory

� Mixing pointers and integers

GDB

GNU Debugger

1/27/2011

2

GDB
� GNU debugger

� Compile code that can run in debug mode

� gcc -ggdb main.c

� Start the debugger

� gdb a.out

� Place some break points

� gdb > break 1

� Run the program with the command line arguments

� gdb> run data.txt

� More commands later…

SIGSEGV
� GDB typically produces this trace

� A signal sent to a process when an illegal memory
access or segmentation fault has occurred

� SIGSEGV is defined in the header file signal.h

� SIGSEGV terminates the process

� creates a “core dump” and write to a core file to aid
debugging

� core file contains the state of the memory at the time of
termination

More Dangerous code
int* foo(int n) {

int x = n*n;

return x;

}

int* foo(int n) {

int x = n*n;

return &x;

}

Arrays

1D Arrays
� Defining an array

� int A[10] � static array of 10 int’s

� char* A[10] � static array of 10 char *’s

� int* A[10] � static array of 10 int *’s

� Array Memory allocation

� Allocates a Contiguous block of memory

� Memory allocation and deallocation is controlled by
compiler

� When does a static array gets deallocated?

Arrays and Pointers
� The name of the array A (or the value it holds) is a

constant pointer to the first element of the array.
That’s is A = anything; is illegal

� The value of A (where the array begins) can be printed
using

� int A[10]; printf(“%x”, A);

� Dangers of Array access using pointers

� C Arrays are not bounded.

� That is, one can access memory not allocated using pointers.

� Access of memory not allocated

� may cause segmentation fault

� Unpredictable program behavior

1/27/2011

3

Array index arithmetic
� The value of A is the address of the first element of the

array

� The value of A + i is the address of A[i] = &A[i]

� A+i

� is an address that is calculated by adding i*sizeof(type)
to A

� The value of A is an address

� The type of A is a const pointer (const int*)

Computing addresses

Calculate the addresses of each element

int A[5]

char* A[5]

char A[5]

[] is an operator

arguments to [] are A and index

A[i] gives access to entry that is

________ bytes away from A[0]

How does A[i] calculated?

Accessing Arrays with []
Allocating and Deallocating Memory

Allocating Array memory dynamically

� int* A; /* does not allocate any memory */

� A = (int*)malloc(n*sizeof(int));

� /* allocates memory to hold n ints*/

� What is the difference between

� int A[n]; and A = malloc(n*sizeof(int));

� Initializing Arrays

� for (i=0; i<n; i++)

A[i] = 0;

Resizing Arrays

1/27/2011

4

Strings

char[] vs char*
� There is a difference between

� char word1[10]

� char* word2

� Look at the size of each of the above

� sizeof(word1)

� sizeof(word2)

� char*’s are big part of segmentation faults

Segmentation Faults
� A segmentation fault is a memory access violation that can

occur during the execution of a program
� int A[10]; A[10] = 23;

� char* word; printf(“%c”, word[0]);

� int x=10; scanf(“%d”, x);

� FILE* fp = fopen(“filename”, “r”); fscanf(fp,”%d”,&num);

� Dereferencing a pointer that is not initialized

� How to fix a segmentation fault
� Need to isolate the code that possibly causes the memory

access violation

� Two ways
� Use a debugger (gdb)

� Comment out statements one by one and isolate the problem

Which of the following code seg

faults? Explain…
� Assume we declare

� char* word; char word2[10];

� Consider the following

� strcpy(word, “guna”);

� strcpy(word2, “guna”);

� word = “guna”;

� word2 = “guna”;

Arrays of char *’s
� An array of char* can be defined as follows

� char* A[n];

� Is it possible then to do

� A[0] = “guna” ;

� What can go wrong here?

char* char* char* char* char*

Array of char *’s
� char* A[n]

� Allocates memory required for n char *’s

� Does not allocate memory for the strings

� Locations are not initialized by default

� How would you initialize the locations? Two ways

� Make all locations NULL

� Assign memory to hold strings in each location

1/27/2011

5

Reading words
� char* A[n];

� Does not allocate memory for Strings

� Allocate memory for each location

� for (int i=0; i<n; i++)

A[i] = malloc(strlen(word)+1)

/* just allocate memory required for the current word*/

Dealing with runtime errors

Run time errors

Process of debugging
� Need to develop a disciplined approach to

programming
� Best way to avoid errors is not to introduce in the first

place

� When errors occur, find out where the program
crashes
� Sometimes with printf statements (be aware of buffer)

� Most times printf’s cannot tell us much

� Ideal way is to use a debugger
� A program that can run your program step-by-step and

provide an execution trace

1/27/2011

6

Basic GDB commands
� r(un) [arglist]Runs your program in GDB with optional argument list

� b(reak) [file:]function/linePuts a breakpoint in that will stop your
program when it is reached

� c(ontinue)Resumes execution of your program after it is stopped

� n(ext)When stopped, runs the next line of code, stepping over functions

� s(tep)When stopped, runs the next line of code, stepping into functions

� q(uit)Exits GDB

� print expr Prints out the given expression

� display var Displays the given variable at every step of execution

� l(ist)Lists source code

� help [command]Gives you help with a specified command

� bt Gives a backtrace (Lists the call stack with variables passed in)

� MORE at: man gdb

Debugging Strategies

� If the whole program does not run, comment out some
functions and try to isolate the function that may be
giving errors

� Identify the error with gdb

� Fix the error and try the next function

� Once all functions are fixed, try running with different
data files

Examples

Next

Dealing with Memory Leaks

