Script Programming
with Perl

15-123
Systems Skills in C and Unix

Scripting Languages
 Many routine programming tasks require custom
desighed solutions, environments and approaches
— Extracting data from a roster file

e Scripting languages are ideal for tasks that do not

require a “high level” compiled language solution

— Some argue that this is the real way to learn programming

— No need to worry about static typing
e Scripts are widely used as backend processing

languages for web based applications

— Authenticate passwords

— Extract data from a database

— Create dynamic web pages

Popular Scripting Languages

JavaScript

— Client side processing based on a built in browser
interpreter

PHP
— Server side processing
Python

— Object oriented, interpreted, data structures, dynamic
typing, dynamic binding, rapid application development,
binding other programming components

Perl
— Also you can call it an “interpreted” language (more later)

Perl

An interpreted scripting language
— Practical extraction and Report Language

— Developed as a tool for easy text manipulation
and report generation

Why Perl
— Easy scripting with strings and regex
— Files and Processes

Standard on Unix
Free download for other platforms

What’s good for Perl?

e Scripting common tasks
* Tasks that are too heavy for the shell

* Too complicated (or short lived) for C

shh — 2l — C
A " \

)
S\\\“;I/ \

A~

First Perl Program

r

—
#! usr/bin/perl —w

print (“hello world \n”); S“ZS"'Y{
__

e How does this work?

— Load the i eter and Execute the program
* perl hello.pl

? \v:krl ‘Af’

—won)

An interpreted language

Program instructions do not get converted to
machine instructions.

Instead program instructions are executed by an
“interpreter” or program translator

Some languages can have compiled and
interpreted versions
— LISP, BASIC, Python

Other interpreters

— Java interpreter (byte code) and .net CIL
* Generates just in time machine code

Perl Data Types

* Naming Variables

— Names consists of numbers, letters and
underscores

— Names cannot start with a number
e Primitives
— Scalars
* Numeric: 10, 450.56
e Strings

— ‘hello there\n’
— “hello there\n”

Perl Data Types

e arrays of scalars

— ordered lists of scalars indexed by number,

starting with 0 or with negative subscripts
counting from the end.

e associative arrays of scalars, a.k.a "hashes".

— unordered collections of scalar values indexed by
their associated string key.

Variables

Sa=1; Sb=2;

All C type operations can be applied
— Sc=5a+Sb; ++5¢; Sa +=1;

— Sa ** Sb - something new?

For strings

— Ss1.Ss2 - concatenation
— Ss1 x Ss2 - duplication

Sa=Sb

— Makes a copy of Sb and assigns to Sa

Useful operations

* substr(Ss, start, length)
— substring of Ss beginning from start position of length
e index string, substring, position

look for first index of the substring in string starting from
position

e index string, substring

look for first index of the substring in string starting from the
beginning

e rindex string, substring

position of substring in string starting from the end of the
string

e length(string) — returns the length of the string

More operations

S =$tring; tr/a/z/; # tris the transliteration operator
replaces all ‘@’ characters of string with a ‘z’ character and assign to S1.
S §’string; tr/ab/xz/;

replaces all ‘a’ characters of string with a ‘x’ character and b with z and
assign to S1.

S =<B(string; s/foo/me/;

replaces all strings of “foo” with string “me”
e chop

this removes the last character at the end of a scalar.
e chomp

removes a newline character from the end of a string
e split splits a string and places in an array

o @array = split(/:/,Sname); # splits the string Sname at each : and stores in
an array

o The ASCII value of a character Sa is given by ord(Sa)

Comparison Operators

Conparison Numeric String
Equal == Eq
Not Equal = e
breater than » bt
Less than { Lt
breater or equal »= be
Less or equal (= Le

Operator Precedence and Associativity

NoONAassoc
nonassoc
left
left
left
left
NoONAassoc
right
right
left
NOoNAassoc
right
left
laft

Source : pﬂl“l « SO

> «w= = 1t gt le ge
= != «=> eq ne cmp

= += —-= *= @atc.
g =

list operators
not

and

O XOr

Associativity Operator
laft terms and list cperators (leftward)
left —
nonassoc ++ —-
right o
right !' ~ % and unary + and -
left =~ =~
left * 4% X
left -
laeft <l el
Nonassodc nam=d unary operators (chomp)

(rightward)

More at: http://www.perl.com/doc/manual/html/pod/perlop.html

Arrays

@array = (10,12,45);

-

5 (s

@A = (‘guna’, ‘me’, ‘emu’, ‘pgh’);

Length of an array
—Slen=S#A +1
Resizing an array
— Slen = desired size

CLE O,z)s))'
A =5
BA 2 ()

A While Loop
Sx = 1;
while (Sx < 10){

print “x is Sx\n”;

$X++;

*)

Until loop
Sx =1,
until (Sx >= 10){

print “x is Sx\n”;

$X++;

}

repetition

Do-while loop

Sx = 1;

dof
print "x is Sx\n";
SX++;

} while (Sx < 10);

for statement
for (Sx=1; Sx < 10; Sx++){
print “x is Sx\n”;
}
foreach statement
foreach Sx (1..9) {
print "x is Sx\n";

repetition

§ = Parsing a roster entry

* '5$10,guna,Gunawardena,Ananda,SCS,CS,3,L,4,
15123 ,A)}

@ Reeey = @WQ)‘ ;&.ES))

~ I\ 0 \) p _
pY) v S \n 5 Bar [z’))

Perl 10
< M At

n—10-))
Ssize = 10; _— > oﬁm dxe b
open(INFILE, “file.txt”); N él/u Y
Sttarr = Ssize-1; # initialize the size of the array to 10

Si=0;
foreach Sline (<INFILE>) {
Sarr[Si++] = Sline;
if (Si >= Ssize) {
S#arr = 2*S#arr + 1; # double the size
Ssize = S#arr + 1;
}
}

Perl 10

* open(OUT, “>out.txt”);

* print OUT “hello there\n”;

* Better file open

— open (OUT, “>out.txt”) | | die “sorry out.txt could
not be opened\n”

Perl and Regex

Perl and Regex

* Perl programs are perfect for regex matching
examples —

— Processing html files

e Read any html file and create a new one that contains
only the outward links

* Do the previous exercise with links that contain
cnn.com only

Regex syntax summary
?) +I *
() -grouping

(exp (exp)) =»\1,\2 orS1, 52
backreference matching

Astartwith

Aexclusion group]

a-z,A-Z] — alpha characters

Perl and regex

open(INFILE, "index.html");

foreach Sline (<INFILE>) { — nJ \o\f\ahéj
if (Sline =~ /guna/){
print Sline;
}

}
close(INFILE);

— |

- ex clus—

Lazy matching and backreference

open(IN, “guna.htm”);
while (<IN>){
if (5_ =~ /mailto:(. *?) "IN
pnntSl "\n";

baclx%%“

Global Matching

 How to find all matches on the same line
open(IN, “guna.htm”);
while (<IN>){
if (S_ =~ /mailto:(.*?)"/g){
print S1."\n";

Global Matching and Replacing

The statement

Sstr =~ s/oo/u/;
would convert "Cookbook" into "Cukbook",
while the statement

Sstr =~ s/oo/u/g;
would convert "Cookbook" into "Cukbuk®".

CGI Scripts and Perl

* CGlis an interface for connecting application
software with web servers

e CGl scripts can be written in Perl and resides
in CGl-bin

 Example: Passwd authentication

while (<passwdfile>) {
(Suser, Spasswd)= split (/:/, S_);

LWP
Library for www in Perl

* LWP contains a collection of Perl modules
— use LWP::Simple;
— S _=get(Surl);
— print S_;

* Good reference at

— http://www.perl.com/pub/a/2002/08/20/perlandl
wp.html

Getopt

 The Getopt::Long module implements an extended getopt
function called GetOptions().

e Command line arguments are given as
— -n20 or—-num 20
— -n 20 -t test

* use Getopt::Long;
« Simages_to _get = 20;

o Sdirectory=".";
« GetOptions("n=i" => \Simages_to_get, "t=s" => \Sdirectory);

References: http://perldoc.perl.org/Getopt/Long.html

