
Graph Algorithms

15-121

Introduction to Data Structures

7/31/2011 1

Ananda Gunawardena

In this lecture..

� Main idea is finding the Shortest Path
between two points in a Graph

� We will look at

�Graphs with non negative cost edges

� Dijkstra’s Algorithm

Shortest Paths

Airline routes

PVD

BOS

JFK

ORD

LAX

SFO

DFW
BWI

MIA

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

How to find the shortest Path?

The naïve solution is
O(n!)

Greedy Algorithms

Greedy Algorithms

� In a greedy algorithm, during each phase,
a decision is made that appears to be
optimal, without regard for future
consequences.

� This “take what you can get now” strategy
is the source of the name for this class of
algorithms.

� When a problem can be solved with a
greedy algorithm, we are usually quite
happy

� Greedy algorithms often match our
intuition and make for relatively painless
coding.

Greedy Algorithms

� 4 ingredients needed

�Optimization problem

� Maximization or minimization

�Can only proceed in stages

� No direct solution available

�Greedy Choice Property

� A locally optimal solution (greedy) will lead to a
globally optimal solution

�Optimal Substructure

� An optimal solution to the problem contains, within it
the optimal solution to the sub problem

Examples

� Find the minimum number of coins
necessary to change 63 cents

�Assume we have 25-cent, 10-cent, 5-
cent, 1-cent coins

� Dijkstra’s algorithm for shortest
paths

�Next…

Shortest Path Algorithm
for

Non-negative weights

(Dijkstra’s Algorithm)

Weighted shortest path

� Now suppose we want to minimize
the total mileage.

� Breadth-first search does not work!

�Minimum number of hops does not
mean minimum distance.

�Consider, for example, BWI-to-DFW:

Three 2-hop routes to DFW

PVD

BOS

JFK

ORD

LAX

SFO

DFW
BWI

MIA

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Dijkstra’s Algorithm

Intuition behind Dijkstra’s alg.

� For our airline-mileage problem, we
can start by guessing that every city
is ∞ miles away.

�Mark each city with this guess.

� Find all cities one hop away from
BWI, and check whether the mileage
is less than what is currently marked
for that city.

�If so, then revise the guess.

� Continue for 2 hops, 3 hops, etc.

Dijkstra’s: Greedy algorithm

� Assume that every city is infinitely far
away.

�I.e., every city is ∞ miles away from BWI
(except BWI, which is 0 miles away).

�Now perform something similar to
breadth-first search, and optimistically
guess that we have found the best path
to each city as we encounter it.

�If we later discover we are wrong and
find a better path to a particular city,
then update the distance to that city.

Dijkstra’s algorithm

� Algorithm initialization:

�Label each node with the distance ∞,
except start node, which is labeled with
distance 0.

� D[v] is the distance label for v.

�Put all nodes into a priority queue Q,
using the distances as labels.

Dijkstra’s algorithm, cont’d

� While Q is not empty do:

�u = Q.removeMin

�for each node z one hop away from u do:

� if D[u] + miles(u,z) < D[z] then

• D[z] = D[u] + miles(u,z)

• change key of z in Q to D[z]

� Note use of priority queue(Heap)
allows “finished” nodes to be found
quickly (in O(log |V|) time).

An Example

Shortest mileage from BWI

PVD
∞

BOS
∞

JFK
∞

ORD
∞

LAX
∞

SFO
∞

DFW
∞

BWI
0

MIA
∞

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
∞

BOS
∞

JFK
184

ORD
621

LAX
∞

SFO
∞

DFW
∞

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
∞

SFO
∞

DFW
1575

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
∞

SFO
∞

DFW
1575

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
∞

SFO
3075

DFW
1575

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
∞

SFO
2467

DFW
1423

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
3288

SFO
2467

DFW
1423

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
2658

SFO
2467

DFW
1423

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
2658

SFO
2467

DFW
1423

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
2658

SFO
2467

DFW
1423

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Shortest mileage from BWI

PVD
328

BOS
371

JFK
184

ORD
621

LAX
2658

SFO
2467

DFW
1423

BWI
0

MIA
946

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121
946

1090

1258621

Classwork

Find the Shortest Paths from S

s

f

a

b

d

e

c

g

4

2

5

1

1

1

4

2

2

Dijkstra’s Algorithm is greedy

1. Optimization problem
� Of the many feasible solutions, finds the

minimum or maximum solution.

2. Can only proceed in stages
� no direct solution available

3. Greedy-choice property:
A locally optimal (greedy) choice will lead
to a globally optimal solution.

4. Optimal substructure:
An optimal solution contains within it
optimal solutions to subproblems

Features of Dijkstra’s Algorithm

• “Visits” every vertex only once, when it
becomes the vertex with minimal distance
amongst those still in the priority queue

•Distances may be revised multiple
times: current values represent ‘best
guess’ based on our observations so far

•Once a vertex is finalized we are
guaranteed to have found the shortest
path to that vertex

Implementation

Initialization: O(n)

Visitation loop: n calls
• deleteMin(): O(log n)
• Each edge is considered only once
during entire execution, for a total
of e updates of the priority queue,
each O(log n)

Overall cost: O((n+e) log n)

Heap is necessary to findMin

Question

� Dijkstra’s only finds the length of the
shortest path

� Is it possible to modify the Dijkstra’s
to actually find out the nodes in the
shortest path?

