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In this lecture..

� Main idea is finding the Shortest Path 
between two points in a Graph

� We will look at

�Graphs with non negative cost edges

� Dijkstra’s Algorithm



Shortest Paths
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How to find the shortest Path?

The naïve solution is
O(n!)



Greedy Algorithms



Greedy Algorithms

� In a greedy algorithm, during each phase,
a decision is made that appears to be 
optimal, without regard for future 
consequences.

� This “take what you can get now” strategy 
is the source of the name for this class of 
algorithms.

� When a problem can be solved with a 
greedy algorithm, we are usually quite 
happy 

� Greedy algorithms often match our 
intuition and make for relatively painless 
coding.



Greedy Algorithms

� 4 ingredients needed

�Optimization problem

� Maximization or minimization

�Can only proceed in stages

� No direct solution available

�Greedy Choice Property

� A locally optimal solution (greedy) will lead to a 
globally optimal solution

�Optimal Substructure

� An optimal solution to the problem contains, within it 
the optimal solution to the sub problem



Examples

� Find the minimum number of coins 
necessary to change 63 cents

�Assume we have 25-cent, 10-cent, 5-
cent, 1-cent coins

� Dijkstra’s algorithm for shortest 
paths

�Next…



Shortest Path Algorithm 
for

Non-negative weights

(Dijkstra’s Algorithm)



Weighted shortest path

� Now suppose we want to minimize 
the total mileage.

� Breadth-first search does not work!

�Minimum number of hops does not 
mean minimum distance.

�Consider, for example, BWI-to-DFW:



Three 2-hop routes to DFW
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Dijkstra’s Algorithm



Intuition behind Dijkstra’s alg.

� For our airline-mileage problem, we 
can start by guessing that every city 
is ∞ miles away.

�Mark each city with this guess.

� Find all cities one hop away from 
BWI, and check whether the mileage 
is less than what is currently marked 
for that city.

�If so, then revise the guess.

� Continue for 2 hops, 3 hops, etc.



Dijkstra’s: Greedy algorithm

� Assume that every city is infinitely far 
away.

�I.e., every city is ∞ miles away from BWI 
(except BWI, which is 0 miles away).

�Now perform something similar to 
breadth-first search, and optimistically 
guess that we have found the best path 
to each city as we encounter it.

�If we later discover we are wrong and 
find a better path to a particular city, 
then update the distance to that city.



Dijkstra’s algorithm

� Algorithm initialization:

�Label each node with the distance ∞, 
except start node, which is labeled with 
distance 0.

� D[v] is the distance label for v.

�Put all nodes into a priority queue Q, 
using the distances as labels.



Dijkstra’s algorithm, cont’d

� While Q is not empty do:

�u = Q.removeMin

�for each node z one hop away from u do:

� if D[u] + miles(u,z) < D[z] then

• D[z] = D[u] + miles(u,z)

• change key of z in Q to D[z]

� Note use of priority queue(Heap) 
allows “finished” nodes to be found 
quickly (in O(log |V|) time).



An Example
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Classwork
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Dijkstra’s Algorithm is greedy

1. Optimization problem
� Of the many feasible solutions, finds the 

minimum or maximum solution.

2. Can only proceed in stages
� no direct solution available

3. Greedy-choice property:
A locally optimal (greedy) choice will lead 
to a globally optimal solution.

4. Optimal substructure:
An optimal solution contains within it 
optimal solutions to subproblems



Features of Dijkstra’s Algorithm

• “Visits” every vertex only once, when it 
becomes the vertex with minimal distance 
amongst those still in the priority queue

•Distances may be revised multiple 
times: current values represent ‘best 
guess’ based on our observations so far

•Once a vertex is finalized we are 
guaranteed to have found the shortest 
path to that vertex



Implementation



Initialization: O(n)

Visitation loop:  n calls
• deleteMin(): O(log n)
• Each edge is considered only once 
during entire execution, for a total 
of e updates of the priority queue, 
each O(log n)

Overall cost:   O( (n+e) log n )

Heap is necessary to findMin



Question

� Dijkstra’s only finds the length of the 
shortest path

� Is it possible to modify the Dijkstra’s 
to actually find out the nodes in the 
shortest path?


