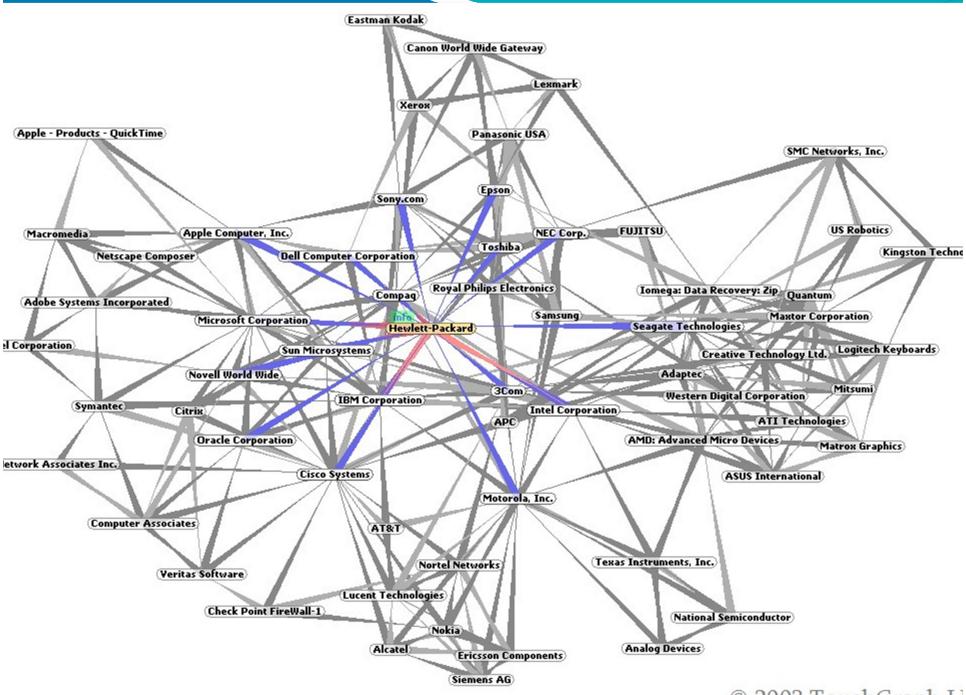

Introduction to Graphs

15-121 Introduction to Data Structures


Ananda Gunawardena

Graphs are everywhere

An Airline route Map

7/31/2011

Finding the Shortest Path Lots of applications

Many real world problems can be modeled using graphs

Airline Route Map

- What is the fastest way to get from Pittsburgh to St Louis?
- What is the cheapest way to get from Pittsburgh to St Louis?

• Electric Circuits

- Circuit elements transistors, resistors, capacitors
- is everything connected together?
 - Depends on interconnections (wires)
- If this circuit is built will it work?
 - Depends on wires and objects they connect.

Graph Definitions

Graph

- A set of vertices (nodes) $V = \{v_1, v_2, ..., v_n\}$
- A set of edges(arcs) that connects the vertices $E=\{e_1, e_2, ..., e_m\}$
- Each edge e; is a pair (v, w) where v, w in V
- |V| = number of vertices (cardinality)
- |E| = number of edges

Graphs can be

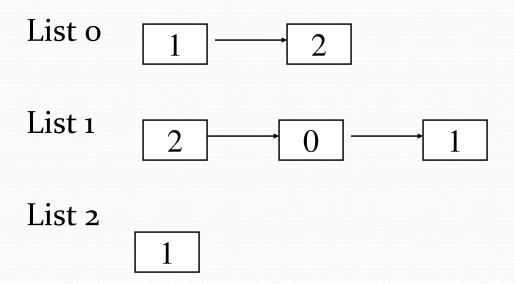
- directed (order (v,w) matters)
- Undirected (order of (v,w) doesn't matter)

• Edges can be

- weighted (cost associated with the edge)
- eg: Neural Network, airline route map(vanguard airlines)

Graph Representations

Graph Representation


- How do we represent a graph internally?
- Two ways
 - adjacency matrix
 - Adjacency list
- Adjacency Matrix
 - Use matrix entries to represent edges in the graph
- Adjacency List
 - Use an array of lists to represent edges in the graph (we will discuss this later)

Adjacency Matrix

- Adjacency Matrix
 - For each edge (v,w) in E, set A[v][w] = edge_cost
 - Non existent edges with logical infinity
- Cost of implementation
 - $O(|V|^2)$ time for initialization
 - $O(|V|^2)$ space
 - ok for dense graphs
 - unacceptable for sparse graphs

Adjacency List

- Adjacency List
 - Ideal solution for sparse graphs
 - For each vertex keep a list of all adjacent vertices
 - Adjacent vertices are the vertices that are connected to the vertex directly by an edge.
 - Example

Adjacency List

- The number of list nodes equals to number of edges
 - O(|E|) space
- Space is also required to store the lists
 - O(|V|) for |V| lists
- Note that the number of edges is at least round(|V|/2)
 - assuming each vertex is in some edge
 - Therefore disregard any O(|V|) term when O(|E|) is present
- Adjacency list can be constructed in linear time (wrt to edges)

Breadth First Traversal

- Algorithm
 - Start from any node in the graph
 - Traverse to its neighbors (nodes that are directly connected to it) using some heuristic
 - Next traverse the neighbors of the neighbors etc.. Until some limit is reach or all the nodes in the graph are visited
 - Use a queue to perform the breadth first traversal

Depth First Traversal

- Algorithm
 - Start from any node in the graph
 - Traverse deeper and deeper until dead end
 - Back track and traverse other nodes that are not visited
 - Use a stack to perform the depth first traversal

Next: Graph Algorithms