
Ananda Gunawardena

Data Structures so far..
� Arrays and ArrayLists(java only)

� Linked Lists – singly, doubly, circular, multi

� Stacks and Queues

� Binary Search Trees

� Hash tables

� Now to priority queues….

A Data structure that is
organized based on what is

important “now”

Grocery Store Example
� Suppose there are 5 people in line and each one

requires a service time (in mins) 10, 4, 5, 6, 12

� What is the average service time per customer?

� Suppose we decided to service smaller times first.

� What is the average time now?

Hence we can make things
efficient by dynamically

reorganizing things

We need a data structure
that can support that

What if we keep things in a
random array and always
serve the next min/max?

What is we use a sorted
array?

Priority Queue
(The Binary Heap)

Priority Queue (or Heap) Data Structure

� A priority queue is a container(data structure) that
supports the operations
� insert(item, priority)

� removeMin().

� FindMin()

� decreaseKey(PQpointer,newPriority)

� There are many applications of Priority queues.
� Data Compression

� Printer queues

� Data routing

Implementing a PQ

� How do we implement a PQ?

� Need a data structure that can support the following
operations well
� insertMin/Max, findMin/max, removeMin/Max

� Possible data structures
� Unordered list?

� What is the insertion complexity? Removal complexity?

� Sorted List?

� What about a binary search tree?

Complete Binary Trees
(implementing PQ’s)

Recall - Complete binary trees

2

1

98

4

10

5 76

3

Representing complete binary trees

� Can be represented using

� Linked structures? (hard)

� Arrays! (easy)

2

1

98

4

10

5 76

3

Representing complete binary trees

� Arrays

� Parent at position i

� Children at 2i and 2i+1.

2

1

98

4

10

5 76

3

Representing complete binary trees

� Arrays (1-based)

� Parent at position i

� Children at 2i and 2i+1.

2

1

98

4

10

5 76

3

1 2 3 4 5 6 7 8 9 10

A heap can be represented
using a complete binary

tree

Binary Heap properties

Must satisfy two properties

1. Structure property
� Complete binary tree

� Hence: efficient compact representation

2. Heap order property

� Parent keys less than children keys

� Hence: rapid insert, findMin, and deleteMin

� O(log(N)) for insert and deleteMin

� O(1) for findMin

An Example of a binary Heap

Priority Queue operations using a binary heap

� How to code a PQ operations using a Heap?

� findMin() –
� The code
public boolean isEmpty() {

return size == 0;
}

public Comparable findMin() {
if(isEmpty()) return null;
return heap[1];
}

� FindMin() does not change the tree
� Trivially preserves the invariant

Insert Operation

� Insert(x) –

� put the new element into next leaf position (to maintain
complete tree property) and then swap it up as long as
it's <= its parent

� More formally…

insert (Comparable x)

� Process

1. Create a “hole” at the next tree cell for x.
heap[size+1]

This preserves the completeness of the tree
assuming it was complete to begin with.

2. Percolate the hole up the tree until the heap order property
is satisfied.

This assures the heap order property is satisfied assuming
it held at the outset.

Percolation up

� Bubble the hole up the tree until the heap order
property(HOP) is satisfied.

i = 11
HOP false

13

2665

24

32

31 6819

16

14 Not really there...

21

Percolation up
� Bubble the hole up the tree until the heap order

property is satisfied.

i = 11 i = 5
HOP false HOP false

13

2665

24

32

31 6819

16

14

13

2665

24

32

14 6819

16

31

2121

Percolation up� Bubble the hole up the tree until the heap order
property is satisfied.

i = 5 i = 2
HOP false HOP true done

13

2665

24

32

21 6819

16

31

13

2665

24

32

14 6819

16

31

1421

Percolation up
public void insert(Comparable x) throws

Overflow

{

if(isFull()) throw new Overflow();

for(int i = ++size;

i>1 && x.compareTo(heap[i/2])<0;

i/=2)

{heap[i] = heap[i/2];}

heap[i] = x;

}

Examples

