
15-121
Data Structures

Ananda Gunawardena

Hashing

Hashing

Why do we need hashing?

� Many applications deal with lots of data

�Search engines and web pages

� There are myriad look ups.

� The look ups are time critical.

� Typical data structures like arrays and
lists, may not be sufficient to handle
efficient lookups

� In general: When look-ups need to
occur in near constant time. O(1)

Why do we need hashing?

� Consider the internet(2002 data):

�By the Internet Software Consortium
survey at http://www.isc.org/ in 2001
there are 125,888,197 internet hosts,
and the number is growing by 20%
every six month!

�Using the best possible binary search
it takes on average 27 iterations to
find an entry.

�By an survey by NUA at
http://www.nua.ie/ there are 513.41
million users world wide.

Why do we need hashing?

� We need something that can do
better than a binary search,
O(log N).

� We want, O(1).

Solution: Hashing
In fact hashing is used in:

Web searches Spell checkers Databases

Compilers passwords Many others

Building an index using HashMaps

WORD NDOCS PTR

jezebel 20

jezer 3

jezerit 1

jeziah 1

jeziel 1

jezliah 1

jezoar 1

jezrahliah 1

jezreel 39
jezoar

34 6 1 118 2087 3922 3981 5002

44 3 215 2291 3010

56 4 5 22 134 992

DOCID OCCUR POS 1 POS 2 . . .

566 3 203 245 287

67 1 132

. . .

More on this in Graphs…

The concept

� Suppose we need to find a better
way to maintain a table
(Example: a Dictionary) that is
easy to insert and search in
O(1).

Big Idea in Hashing

� Let S={a1,a2,…am} be a set of objects that
we need to map into a table of size N.

�Find a function such that H:S [1…n]

� Ideally we’d like to have a 1-1 map

�But it is not easy to find one

�Also function must be easy to compute

� It is a good idea to pick a prime as the table
size to have a better distribution of values

� Assume ai is a 16-bit integer.

�Of course there is a trivial map H(ai)=ai

�But this may not be practical. Why?

Finding a hash Function

� Assume that N = 5 and the values
we need to insert are: cab, bea, bad
etc.

� Let a=0, b=1, c=2, etc

� Define H such that

�H[data] = (∑ characters) Mod N

� H[cab] = (2+0+1) Mod 5 = 3

� H[bea] = (1+4+0) Mod 5 = 0

� H[bad] = (1+0+3) Mod 5 = 4

Collisions

� What if the values we need to insert
are “abc”, “cba”, “bca” etc…

�They all map to the same location
based on our map H (obviously H is not a good

hash map)

� This is called “Collision”

� When collisions occur, we need to
“handle” them

� Collisions can be reduced with a selection
of a good hash function

Choosing a Hash Function

� A good hash function must
�Be easy to compute

�Avoid collisions

� How do we find a good hash function?

� A bad hash function
�Let S be a string and H(S) = Σ Si where Si is the ith

character of S

�Why is this bad?

Choosing a Hash Function?

� Question

�Think of hashing 10000, 5-letter words into a
table of size 10000 using the map H defined as
follows.

�H(a0a1a2a3a4) = Σ ai (i=0,1….4)

�If we use H, what would be the key
distribution like?

Choosing a Hash Function

� Suppose we need to hash a set of strings
S ={Si} to a table of size N

� H(Si) = (Σ Si[j].d
j) mod N, where Si[j] is

the jth character of string Si

�How expensive is to compute this function?

• cost with direct calculation

• Is it always possible to do direct calculation?

� Is there a cheaper way to calculate this? Hint:
use Horners Rule.

Code

public static int hash(String key, int n){

int value = 0;

for (int i=0; i<key.length(); i++)

value = (value*128+ key.charAt(i))%n;

return value;

}

� What does this function return if “guna” is
hashed into a table of size 101?

� What is the complexity of code in terms of string
length?

� What are some of the problems with this
function?

Collisions

� Hash functions can be many-to-1

�They can map different search keys to
the same hash key.

hash1(`a`) == 9 == hash1(`w`)

� Must compare the search key with
the record found

�If the match fails, there is a collision

Collision Resolving strategies

� Separate chaining

� Open addressing

�Linear Probing

�Quadratic Probing

�Double Probing

�Etc.

Separate Chaining

� Collisions can be resolved by
creating a list of keys that map to
the same value

Separate Chaining

� Use an array of linked lists

�LinkedList[] Table;

�Table = new LinkedList(N), where N is the
table size

� Define Load Factor of Table as

�λλλλ = number of keys/size of the table

(λλλλ can be more than 1)

� Still need a good hash function to
distribute keys evenly

�For search and updates

Linear Probing

� The idea:
�Table remains a simple array of size N

�On insert(x), compute f(x) mod N, if
the cell is full, find another by
sequentially searching for the next
available slot
• Go to f(x)+1, f(x)+2 etc..

�On find(x), compute f(x) mod N, if the
cell doesn’t match, look elsewhere.

�Linear probing function can be given by
• h(x, i) = (f(x) + i) mod N (i=1,2,….)

Figure 20.4
Linear probing
hash table after
each insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Linear Probing Example

� Consider H(key) = key Mod 6 (assume N=6)

� H(11)=5, H(10)=4, H(17)=5, H(16)=4,H(23)=5

� Draw the Hash table

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

Clustering Problem
• Clustering is a significant problem in linear probing. Why?
• Illustration of primary clustering in linear probing (b) versus no clustering
(a) and the less significant secondary clustering in quadratic probing (c).
Long lines represent occupied cells, and the load factor is 0.7.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Linear Probing

� How about deleting items from Hash
table?

�Item in a hash table connects to others
in the table(eg: BST).

�Deleting items will affect finding the
others

�“Lazy Delete” – Just mark the items as
inactive rather than removing it.

Lazy Delete

� Naïve removal can leave gaps!
Insert f

Remove e
Find f

0 a

2 b

3 c

3 e

5 d

8 j

8 u

10 g

8 s

0 a

2 b

3 c

5 d

3 f

8 j

8 u

10 g

8 s

0 a

2 b

3 c

3 e

5 d

3 f

8 j

8 u

10 g

8 s

0 a

2 b

3 c

5 d

3 f

8 j

8 u

10 g

8 s

“3 f” means search key f and hash key 3

Lazy Delete

� Clever removal
Insert f

Remove e
Find f

0 a

2 b

3 c

3 e

5 d

8 j

8 u

10 g

8 s

0 a

2 b

3 c

gone

5 d

3 f

8 j

8 u

10 g

8 s

0 a

2 b

3 c

3 e

5 d

3 f

8 j

8 u

10 g

8 s

0 a

2 b

3 c

gone

5 d

3 f

8 j

8 u

10 g

8 s

“3 f” means search key f and hash key 3

Load Factor (open addressing)

� definition: The load factor λλλλ of a probing
hash table is the fraction of the table
that is full. The load factor ranges from 0
(empty) to 1 (completely full).

� It is better to keep the load factor under
0.7

� Double the table size and rehash if load
factor gets high

� Cost of Hash function f(x) must be
minimized

� When collisions occur, linear probing can
always find an empty cell
�But clustering can be a problem

Quadratic Probing

Quadratic probing

� Another open addressing method

� Resolve collisions by examining certain
cells (1,4,9,…) away from the original
probe point

� Collision policy:

�Define h0(k), h1(k), h2(k), h3(k), …

where hi(k) = (hash(k) + i2) mod size

� Caveat:

�May not find a vacant cell!

• Table must be less than half full (λ < ½)

� (Linear probing always finds a cell.)

Quadratic probing

� Another issue

�Suppose the table size is 16.

�Probe offsets that will be tried:

1 mod 16 = 1

4 mod 16 = 4

9 mod 16 = 9

16 mod 16 = 0

25 mod 16 = 9 only four different values!

36 mod 16 = 4

49 mod 16 = 1

64 mod 16 = 0

81 mod 16 = 1

Figure 20.6
A quadratic
probing hash table
after each
insertion (note that
the table size was
poorly chosen
because it is not a
prime number).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

