Balanced Trees

15-121 Data Structures

Ananda Gunawardena

A Good Tree

```
In a "good" BST we have depth of T = O( log n ) n = num \ of \ nodes \ in \ the \ tree
```

- •Theorem: If the tree is constructed from n inputs given in random order, then we can expect the depth of the tree to be $\log_2 n$. (no proof given)
- •But if the input is already (nearly, reverse,...) sorted we are in trouble.

Forcing good behavior

- We can show that for any n inputs, there always is a BST containing these elements of logarithmic depth.
- But if we just insert the standard way, we may build a very unbalanced, deep tree.
- •Can we somehow force the tree to remain shallow?
 - •At low cost?

Balanced Trees

- A balanced tree is where equal ("almost")
 number of nodes exists in left and right sub trees
 of each node
 - However in practice this is hard to enforce
- We can expect the trees to remain shallow by "randomizing" a data set before inserting to a tree
 - Need O(n) operations to randomize the data set
- A relaxed balanced condition can be used in building a "good" tree
 - AVL trees

AVL Trees

- AVL trees requires a relaxed balanced condition
- Define "balanced factor" of a node to be the absolute difference in heights between left and right sub trees
- AVL tree is defined as a tree such that, for each node, balanced factor ≤ 1

AVL-Trees

G. M. Adelson-Velskii and E. M. Landis, 1962

AVL-Trees

An AVL-tree is a BST with the property that at every node the difference in the depth of the left and right subtree is at most 1.

Bad News

Insertion in an AVL-tree is more complicated: inserting a new element as a leaf may break the balance of the tree.

But we can't just place the new element somewhere else, we have to maintain the BST property.

Solution: insert in standard place, but then rebalance the tree.

But How?

The magic concept is rotation. A rotation rearranges a BST, but preserve the BST property.

Can be done out in O(1) steps.

To fix up an AVL tree, we have to perform several rotations, but only along a branch: total damage is O(log #nodes).

But How?

rotate right on y

So?

Rotation does not change the flattening, so we still have a BST.

But the depth of the leaves change by -1 in A, stay the same in B, and change by +1 in C.

Well, not quite

Unfortunately, there are other cases to consider, depending on where exactly the balance condition is violated.

To fix some of them requires a double rotation.

There is a nice demo at:

http://www.site.uottawa.ca/~stan/csi2514/applet s/avl/BT.html

Tree Balance Rotations

- Note that after an insertion only the nodes in the path from root to the node have their balance information altered
- Find the node that violates the AVL condition and rebalance the tree.
- Assume that X is the node that has violated the AVL condition
 - I.e The left and right sub trees of X is differ by 2 in height.

Four Cases – Case I

Case I – The left subtree of the left child of X violates the property.

Code for Case 1

```
/** * Rotate binary tree node with left child. * For AVL trees,
    this is a single rotation for case 1. */

static <AnyType> BinaryNode<AnyType> rotateWithLeftChild(
    BinaryNode<AnyType> k2 ) {
        BinaryNode<AnyType> k1 = k2.left;
        k2.left = k1.right;
        k1.right = k2; return k1;
    }
}
```

Four Cases – Case 2

Case 2 – The right subtree of the right child of X violates

Code for Case 2

```
/** * Rotate binary tree node with right child. * For
  AVL trees, this is a single rotation for case 4. */
static <AnyType> BinaryNode<AnyType>
  rotateWithRightChild(BinaryNode<AnyType> k1
{ BinaryNode<AnyType>
   k2 = k1.right; k1.right = k2.left;
   k2.left = k1; return k2;
```

Four Cases – Case 3

Case 3 – The right subtree of the left child of X violates the

Four Cases – Case 3 ctd...

Code for Case 3

```
/** * Double rotate binary tree node: first right child
  * with its left child; then node k1 with new right
  child. * For AVL trees, this is a double rotation
  for case 3. */
static <AnyType> BinaryNode<AnyType>
  doubleRotateWithRightChild(
     BinaryNode<AnyType> k1)
  k1.right = rotateWithLeftChild( k1.right ); return
  rotateWithRightChild(k1);
                                                    20
7/20/2011
```

Four Cases – Case 4

Case 4 – The left subtree of the right child of X violates the

property

21 Fd

Four Cases – Case 4 ctd...

Code for Case 4

```
/** Double rotate binary tree node: first left child * with its
  right child; then node k3 with new left child. * For AVL
  trees, this is a double rotation for case 2.
  static <AnyType> BinaryNode<AnyType>
      doubleRotateWithLeftChild( BinaryNode<AnyType>
  k3)
   { k3.left = rotateWithRightChild( k3.left );
     return rotateWithLeftChild(k3);
```

AVL Tree Examples

Insert 12, 8, 7, 14, 18, 10, 20 with AVL rotations

Implementing AVL trees

 The main complications are insertion and deletion of nodes.

- For deletion:
 - Don't actually delete nodes.
 - Just mark nodes as deleted.
 - Called *lazy deletion*.

Lazy deletion

On average, deleting even half of the nodes by marking leads to depth penalty of only 1.

AVL Summary

- Insert a new node in left or right subtree.
- Test the height information along the path of the insertion. If not changed we are done
- Otherwise do a single or double rotation based on the four cases
- Question: What is the best thing to do about height info?