
7/20/2011 1

Balanced Trees

15-121

Data Structures

Ananda Gunawardena

7/20/2011 2

A Good Tree

In a "good" BST we have

depth of T = O(log n)

n = num of nodes in the tree

•Theorem: If the tree is constructed from n inputs
given in random order, then we can expect the depth
of the tree to be log2 n. (no proof given)

•But if the input is already (nearly, reverse,…) sorted
we are in trouble.

7/20/2011 3

Forcing good behavior

• We can show that for any n inputs, there always
is a BST containing these elements of logarithmic
depth.

•But if we just insert the standard way, we may
build a very unbalanced, deep tree.

•Can we somehow force the tree to remain
shallow?

•At low cost?

7/20/2011 4

Balanced Trees

• A balanced tree is where equal (“almost”)
number of nodes exists in left and right sub trees
of each node
– However in practice this is hard to enforce

• We can expect the trees to remain shallow by
“randomizing” a data set before inserting to a
tree
– Need O(n) operations to randomize the data set

• A relaxed balanced condition can be used in
building a “good” tree
– AVL trees

7/20/2011 5

AVL Trees

• AVL trees requires a relaxed balanced
condition

• Define “balanced factor” of a node to be
the absolute difference in heights between
left and right sub trees

• AVL tree is defined as a tree such that, for
each node, balanced factor ≤ 1

7/20/2011 6

AVL-Trees
G. M. Adelson-Velskii and E. M. Landis, 1962

1 or less

7/20/2011 7

AVL-Trees

An AVL-tree is a BST with the property that at every
node the difference in the depth of the left and
right subtree is at most 1.

OK

not OK

7/20/2011 8

Bad News

Insertion in an AVL-tree is more complicated:
inserting a new element as a leaf may break the
balance of the tree.

But we can't just place the new element somewhere
else, we have to maintain the BST property.

Solution: insert in standard place, but then
rebalance the tree.

7/20/2011 9

But How?

The magic concept is rotation. A rotation rearranges
a BST, but preserve the BST property.

Can be done out in O(1) steps.

To fix up an AVL tree, we have to perform several
rotations, but only along a branch: total damage is
O(log #nodes).

7/20/2011 10

But How?

rotate right on y

x

A
B

y

C

x

A

B

y

C

rotate left on x

7/20/2011 11

So?

Rotation does not change the flattening, so we still
have a BST.

But the depth of the leaves change by -1 in A, stay
the same in B, and change by +1 in C.

7/20/2011 12

Well, not quite

Unfortunately, there are other cases to consider,
depending on where exactly the balance condition
is violated.

To fix some of them requires a double rotation.

There is a nice demo at:

http://www.site.uottawa.ca/~stan/csi2514/applet
s/avl/BT.html

7/20/2011 13

Tree Balance Rotations

• Note that after an insertion only the nodes
in the path from root to the node have their
balance information altered

• Find the node that violates the AVL
condition and rebalance the tree.

• Assume that X is the node that has
violated the AVL condition
– I.e The left and right sub trees of X is differ by

2 in height.

7/20/2011 14

Four Cases – Case I

Case I – The left subtree of the left child of X violates the

property.

X

y

A

B

C

X

y

A
B

C

Rotate RIGHT

7/20/2011 15

Code for Case 1

/** * Rotate binary tree node with left child. * For AVL trees,

this is a single rotation for case 1. */

static <AnyType> BinaryNode<AnyType> rotateWithLeftChild(

BinaryNode<AnyType> k2) {

BinaryNode<AnyType> k1 = k2.left;

k2.left = k1.right;

k1.right = k2; return k1;

}

7/20/2011 16

Four Cases – Case 2

Case 2 – The right subtree of the right child of X violates

the property.
X

y

A
B

C

Rotate LEFT

X

y

A
BC

7/20/2011 17

Code for Case 2

/** * Rotate binary tree node with right child. * For

AVL trees, this is a single rotation for case 4. */

static <AnyType> BinaryNode<AnyType>

rotateWithRightChild(BinaryNode<AnyType> k1

)

{ BinaryNode<AnyType>

k2 = k1.right; k1.right = k2.left;

k2.left = k1; return k2;

}

7/20/2011 18

Four Cases – Case 3

Case 3 – The right subtree of the left child of X violates the

property
X

y

A

C

D

Z

B

X

y A

CD

Z

B

Rotate the tree LEFT

about X’s child and

Grandchild

Ctd..

7/20/2011 19

Four Cases – Case 3 ctd..

Xy

A
CD

Z

B

Rotate the tree RIGHT

about X and its new

childX

y A

CD

Z

B

7/20/2011 20

Code for Case 3

/** * Double rotate binary tree node: first right child
* with its left child; then node k1 with new right
child. * For AVL trees, this is a double rotation
for case 3. */

static <AnyType> BinaryNode<AnyType>
doubleRotateWithRightChild(

BinaryNode<AnyType> k1)

{

k1.right = rotateWithLeftChild(k1.right); return
rotateWithRightChild(k1);

}

7/20/2011 21

Four Cases – Case 4

Case 4 – The left subtree of the right child of X violates the

property
Rotate the tree RIGHT

about Y and ZX

y

A

C

D

Z

B

X

y

AC

D Z

B

Ctd..

7/20/2011 22

Four Cases – Case 4 ctd..

Rotate the tree LEFT

about X and ZX

y

A

C

D
Z

B

X y

AC
D

Z

B

7/20/2011 23

Code for Case 4

/** Double rotate binary tree node: first left child * with its

right child; then node k3 with new left child. * For AVL

trees, this is a double rotation for case 2.

*/

static <AnyType> BinaryNode<AnyType>

doubleRotateWithLeftChild(BinaryNode<AnyType>

k3)

{ k3.left = rotateWithRightChild(k3.left);

return rotateWithLeftChild(k3);

}

7/20/2011 24

AVL Tree Examples

• Insert 12, 8, 7, 14, 18, 10, 20 with AVL
rotations

7/20/2011 25

Implementing AVL trees

• The main complications are insertion and
deletion of nodes.

• For deletion:

– Don’t actually delete nodes.

– Just mark nodes as deleted.

– Called lazy deletion.

7/20/2011 26

Lazy deletion

5

3

6

7

2 4 9

On average, deleting even half of the nodes by
marking leads to depth penalty of only 1.

7/20/2011 27

AVL Summary

• Insert a new node in left or right subtree.

• Test the height information along the path
of the insertion. If not changed we are
done

• Otherwise do a single or double rotation
based on the four cases

• Question: What is the best thing to do
about height info?

