
7/15/2011 1

BST Operations

15-111

Data Structures

Ananda Gunawardena

7/15/2011 2

Traversal Algorithms

• Inorder traversal

– Left Root Right

• Preorder traversal

– Root Left Right

• Postorder traversal

– Left Right Root

• Level order traversal

7/15/2011 3

Expression Trees
• Draw the expression tree of

(1 + 2) * 3 - (4 ^ (5 - 6)) (1 + 2) * 3 - (4 ^ (5 - 6))

• Perform preorder traversal

• Perform postorder traversal

7/15/2011 4

Level order or Breadth-first traversal

•Visit nodes by levels

• Root is at level zero

• At each level visit nodes
from left to right

• Called “Breadth-First-
Traversal(BFS)”

7/15/2011 5

Level order or Breadth-first traversal

enqueue the root

while (the queue is not empty)

{

dequeue the front element

print it

enqueue its left child (if present)

enqueue its right child (if present)

}

BFS Algorithm

7/15/2011 6

Tree Operations

• Insert Operation (recursive)

Insert(Node, T) = Node if T is empty

= insert(Node, T.left) if Node < T

= insert(Node, T.right) if Node > T

• Homework: Write an iterative version of insert

7/15/2011 7

Insert code
public void insert(Comparable key, Object item) {

int result = key.compareTo(this.key);

if (result < 0) { // to the left

if (left == null)

left = new BinaryNode(key, item);

else left.insert(key,item);

} else { // to the right

if (right == null)

right = new BinaryNode(key, item);

else right.insert(key,item);

}

}

Note: Assume left and right references are public

7/15/2011 8

Tree Operations

• Search Operation

Search(Node, T) = false if T is empty

= true if T = Node

= search(Node, T.left) if Node < T

= search(Node, T.right) if Node > T

• Homework: Write an iterative version of search

7/15/2011 9

Insertions

• Insertions in a BST are very similar to
searching: find the right spot, and then put
down the new element as a new leaf.

•We will not allow multiple insertions of the
same element, so there is always exactly one
place for the new entry.

•How do we handle duplicate elements in a
tree? What is the complexity of an algorithm
to determine if there are duplicate elements in
a tree?

7/15/2011 10

Delete Node

• 3 cases

– Case 1: Leaf node

– Case 2: Node with one child

– Case 3: Node with two children

1 2

3

7/15/2011 11

Delete Node

• Case 1 – Node is a leaf node

– Just delete the leaf node

– No changes to any subtree as a result

• Case 2 – Node has one child

– If child is a left child, make the parent pointer

go to left child

7/15/2011 12

Delete Node

• Case 3 – Node has 2 children

– This is a complicated case

– Best strategy is to find the

• Largest node in the left subtree OR

• Smallest node in the right subtree

– Swap the data of the node to be deleted with

one of the nodes as above

– Delete the leaf node

7/15/2011 13

Delete code

public BinaryNode delete(Comparable key) {

int result = key.compareTo(this.key);

if (result != 0) { // not there yet

if (result < 0 && left != null) left = left.delete(key);

if (result > 0 && right != null) right = right.delete(key);

return this;

}

if (left == null && right == null) return null;

// case 1 (not actually needed)

if (left == null) return right; // case 2

if (right == null) return left; // case 2

BinaryNode next; // case 3

for (next = right; next.left != null; next = next.left);

this.key = next.key; this.item = next.item;

right = right.delete(this.key);

return this;

}

7/15/2011 14

Other Operations

• Counting nodes

• Height of a tree

7/15/2011 15

Other Operations

• Max node

• Min Node

7/15/2011 16

Good Tree

• A good tree has the minimum search depth for
any node

•But in a "good" BST we have

depth of T = O(log # nodes)

Theorem: If the tree is constructed from n inputs
given in random order, then we can expect the depth
of the tree to be log2 n.

But if the input is already (nearly, reverse,…) sorted
we are in trouble.

7/15/2011 17

Forcing good behavior

• We can show that for any n inputs, there always
is a BST containing these elements of logarithmic
depth.

•But if we just insert the standard way, we may
build a very unbalanced, deep tree.

•Can we somehow force the tree to remain
shallow?

•At low cost?

• Next we will discuss balanced trees

