
15-121

Data Structures

7/12/2011 1

Ananda Gunawardena

Problem Solving Techniques

7/12/2011 2

Divide and Conquer

7/12/2011 3

Exhaustive Search

7/12/2011 4

Greedy Algorithms

7/12/2011 5

Dynamic Programming

7/12/2011 6

applicable to problems that exhibit the properties of overlapping sub

problems and optimal substructure

Recursion

7/12/2011 7

The promise of recursion
� Suppose you can express the solution to a bigger

problem using solution to a sub problem

� F(n) = n * F(n-1)

� The express the solution to what is called base case

� F(0) = F(1) = 1

� Question: What is the closed form of this function?

7/12/2011 8

Change problem
� Problem: Given n cents in change, find the least

number of coins to provide the change

� Solution:

� Iterative: Keep subtracting highest coin until the balance
is zero

� Recursive: Assume you know how to express the
solution using solution to a sub problem

� C(n) = 1 + C(n-25) if (n > 25)

7/12/2011 9

7/12/2011 10

What problems can be solved using

Recursion

� Problems that lend themselves to recursive solution have
the following characteristics

� one or more simple cases of the problem (stopping
cases) have a straightforward, non-recursive
solution

� For the other cases, there is a process (using
recursion) for substituting one or more reduced
cases of the problem closer to a stopping case

� Eventually the problem can be reduced to stopping
cases only

7/12/2011 11

General Form of a recursive Function

� The recursive functions we work with will generally consist of an if
statement with the form shown below

if the stopping case or base case is reached

solve the problem

else

reduce the problem using

recursion

7/12/2011 12

Recursion
� Examples

GCD(a,b) = a if a=b

= 0 if a=0 or b=0

= GCD(a%b, b) if a > b

= GCD(a, b%a) if b > a

7/12/2011 13

Tower of Hanoi Problem

7/12/2011 14

Rules of the game
� Move one disk at a time

� Cannot place a larger disk on the top of a smaller disk

� Find

� Moves you need to solve Hanoi(n) problem

7/12/2011 15

Thinking about the game
� Consider small cases

� N = 1 trivial

� N = 2

� N = 3

7/12/2011 16

Generalizing Hanoi

7/12/2011 17

Suppose you need to move n disks from a

origin to Destination using intermediate

•You break the problem into parts

• move first (n-1) disks from origin to

intermediate using destination

• move the n-th disk from origin to

destination

• move the (n-1) disks from intermediate to

destination using origin

Tracing Hanoi

7/12/2011 18

Tracing Recursion
public void foo(n) {

if (n == 0) return 0;

else return n+foo(n-1);

}

7/12/2011 19

Recursive Solutions
� Implementing a recursive solution is generally less

efficient in terms of system overhead, due to the
overhead of extra function calls;

� however recursive functions

� allow us to think of solutions to problems that may be
recursive in nature

� allow us to work with data structures that are best
accessed recursively
� Eg: binary search trees

7/12/2011 20

Famous Recursive Solutions

7/12/2011 21

Types of Recursion
� Head recursion

public void foo(n){

if (n>0) foo(n-1);

System.out.println(n);

}

� Tail Recursion

public void foo(n){

if (n>0) System.out.println(n);

else foo(n-1);

}

7/12/2011 22

What is the output?
public void printPattern(int n){

if (n > 0) {

printPattern(n-1);

printStars(n);

printPattern(n-1);

}

Where printStars(n) prints n stars.

Eg: printStarts(3) � ***

7/12/2011 23

Next
� List and Recursion

� Binary Search using Recursion

� Maze Solver

� Thinking recursively

7/12/2011 24

