@ L w— -
Ananda Gunawardena

7/12/2011

Problem Solving Techniques

7/12/2011

Dive and Conquer

Istanbul 3
<o P KYRGYZSTAN o
.- g GEORGIA UZBEKISTAN g
. "
| . :
e o CHINA o
GREATER
LEBANONC_~
ISRAEL
(pre-1967 borders)
WEST BANK
NEPAL
INDIA
QATA!
SAUDI HOMELANDS
INDEPENDENT
TERRITORIES
SUDAN
&
Countries gaining territory labeled in black g
Countries losing territory labeled in red)
Countnes unchanged labeled in gray
ETHIOPIA
= vl

Exhaustive Search

poes——— e
5 Sistetnia
NORDRHEI N -

o Pastroor

Prmo

=
TSCHECHOSLOWAKE!

Pitaan o

W URTTEMBERG
Burg

7/12/2011

Greedy Algorithms

The greedy algorithm used to give change.
Amount owed: 41 cents.

Subtract Quarter Z
41-25=16 \

Subtract Dime
16-10=6

Subtract Nickel
6-5=1

Subtract Penny
1-1=0

7/12/2011 5

Dynamic Programming

G

A

A

T

T

C

A

G

0

0

0

0

0

0

0

0

o|-
ol

>O0O-HP» OO

O0I000 000

applicable to problems that exhibit the properties of overlapping sub

problems and optimal substructure

7/12/2011

Recursion

7/12/2011 7

The promise of recursion

* Suppose you can express the solution to a bigger
problem using solution to a sub problem

e F(n) =n * F(n-1)

* The express the solution to what is called base case
e F(o) =F(1) =1

* Ouestion: What is the closed form of this function?

7/12/2011 8

ange problem

* Problem: Given n cents in change, find the least
number of coins to provide the change
e Solution:

e [terative: Keep subtracting highest coin until the balance
1S Zero

e Recursive: Assume you know how to express the
solution using solution to a sub problem

« C(n) =1+ C(n-25) if (n> 25)

7/12/2011 9

7/12/2011

10

~ What problems can be solved using
Recursion

* Problems that lend themselves to recursive solution have
the following characteristics

e one or more simple cases of the problem (stopping
cases) have a straightforward, non-recursive
solution

 For the other cases, there is a process (using
recursion) for substituting one or more reduced
cases of the problem closer to a stopping case

e Eventually the problem can be reduced to stopping
cases only

7/12/2011 11

General Form of a recursive Function

* The recursive functions we work with will generally consist of an i £
statement with the form shown below

1f the stopping case or base case 1s reached

solve the problem
else

reduce the problem using
recursion

7/12/2011 12

rsion

* Examples

GCD(a,b) =a if a=b
=0 ifa=oorb=0
= GCD(a%b, b) ifa>Db
= GCD(a, b%a) if b>a

7/12/2011 13

Tower of Hanoi Problem

F

7/12/2011 14

Rules of the game

® Move one disk at a time

* Cannot place a larger disk on the top of a smaller disk
* Find

e Moves you need to solve Hanoi(n) problem

7/12/2011

15

!I!ninking about the game

e Consider small cases
e N =1 trivial
e N=2

.N=3

7/12/2011 16

Suppose you need to move n disks from a
origin to Destination using intermediate

*You break the problem into parts
* move first (n-1) disks from origin to
iIntermediate using destination
* move the n-th disk from origin to

destination
* move the (n-1) disks from intermediate to

destination using origin

7/12/2011 17

N

Tracing Hanoil

7/12/2011 18

!racing Recursion

public void foo(n) {
if (n == o) return o;
else return n+foo(n-1);

J

7/12/2011 19

/\

* Implementing a recursive solution is generally less
efficient in terms of system overhead, due to the
overhead of extra function calls;

* however recursive functions

e allow us to think of solutions to problems that may be
recursive in nature

e allow us to work with data structures that are best
accessed recursively

« Eg: binary search trees

7/12/2011 20

Famous Recursive Solutions

£ &
& 4 & A
,evw", .e'e.
A A5 A5 A 6 4 L A
AL

A Sierpinski triangle—a confined recursion of &
triangles to form a geometric lattice.

7/12/2011 21

ypes of Recursion

e Head recursion
public void foo(n){
if (n>0) foo(n-1);
System.out.println(n);

}

e Tail Recursion
public void foo(n){
if (n>o0) System.out.println(n);
else foo(n-1);

}

7/12/2011 5

%atis the output?

public void printPattern(int n){
if (n>o0){
printPattern(n-1);
printStars(n);
printPattern(n-1);
}
Where printStars(n) prints n stars.
Eg: printStarts(3) = ***

7/12/2011 23

ext

e List and Recursion
* Binary Search using Recursion

* Maze Solver
e Thinking recursively

7/12/2011 24

