
CS 15-121

Ananda Gunawardena



� A collection (sometimes called a container) 
is simply an object that groups multiple 
elements into a single unit. 

� Collections are used to store, retrieve and 
manipulate data, and to transmit data from 
one method to another. 

� Examples:
◦ Arrays, hashtables, vector, set, map, tree



� ArrayList is a java collection that allows 
management of a dynamic list collection

� Eg:
◦ ArrayList  A = new ArrayList();

◦ A.add(new Integer(10));

◦ System.out.println(A.get(0));

◦ If (A.contains(new Integer(10))) { ….}

◦ A.remove(0);



See others at 

http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html



� Given an ArrayList A of objects write a 
method removeDups that removes all 
duplicate elements from the list



� The Collections Framework
◦ A unified architecture for representing and 

manipulating collections, allowing them to be 
manipulated independently of the details of 
their representation. 

◦ Reduces programming effort while increasing 
performance. 

◦ Allows for interoperability among unrelated 
APIs, reduces effort in designing and learning 
new APIs, and fosters software reuse.
◦



� InterfacesInterfacesInterfacesInterfaces: abstract data types representing collections. 
Interfaces allow collections to be manipulated 
independently of the details of their representation. In 
object-oriented languages like Java, these interfaces 
generally form a hierarchy. 

� ImplementationsImplementationsImplementationsImplementations: concrete implementations of the 
collection interfaces. In essence, these are reusable 
data structures. 

� AlgorithmsAlgorithmsAlgorithmsAlgorithms: methods that perform useful 
computations, like searching and sorting, on objects 
that implement collection interfaces. These algorithms 
are said to be polymorphic because the same method 
can be used on many different implementations of the 
appropriate collections interface. In essence, 
algorithms are reusable functionality. 



� A Java interface contains specifications for a 
known set of functions.

� These functions are to be implemented by 
classes
◦ Eg:  public class foo implements List {    }

� Interfaces from java collections framework







Java does not allow above

Here is a hack



� Reduces programming effort

� Increases program speed and quality

� Allows interoperability among unrelated APIs

� Reduces the effort to learn and use new APIs:

� Reduces effort to design new APIs

� Supports software reuse



� Set is a collection with NO order
� Similar to the Mathematical Abstraction of Set
public interface Set { 

// Basic Operations// Basic Operations// Basic Operations// Basic Operations
int size(); 
boolean isEmpty(); 
boolean contains(Object element); 
boolean add(Object element); 
// Optional// Optional// Optional// Optional
boolean remove(Object element); 
Iterator iterator(); 
boolean removeAll(Collection c); 
boolean retainAll(Collection c); 
void clear();
// Bulk Operations // Bulk Operations // Bulk Operations // Bulk Operations 
boolean containsAll(Collection c); 
boolean addAll(Collection c); 
//Array Operations 
Object[] toArray(); Object[] toArray(Object a[]);

} 
� Example:  Collections noDups = new HashSet(c );



import java.util.*; 
public class FindDups { 

public static void main(String args[]) { 
Set s = new HashSet(); 
for (int i=0; i<args.length; i++) 

if (!s.add(args[i])) 
System.out.println("Duplicate detected: "+args[i]);      

System.out.println(s.size()+" distinct words detected: "+s); 
} 

}

� What is the output of :  java FindDups  I am sam sam I am 



� s1.containsAll(s2): Returns true if s2 is a subsetsubsetsubsetsubset of s1
� s1.addAll(s2): Transforms s1 into the unionunionunionunion of s1 and s2
� s1.retainAll(s2): Transforms s1 into the intersectionintersectionintersectionintersection of s1 and 

s2
� s1.removeAll(s2): Transforms s1 into the (asymmetric) set (asymmetric) set (asymmetric) set (asymmetric) set 

differencedifferencedifferencedifference of s1 and s2
� Exercise: Write a program that will read a line of words and 

list those ones that occur once and those that occur more 
than once.

◦ Example: java FindDups i am Sam Sam I am 
◦ Unique words: [i, I ] 
◦ Duplicate words: [Sam, am] 

� More info at:
◦ http://java.sun.com/docs/books/tutorial/collections/interfaces/set.html



� List is an ordered Collection (sometimes called 
a sequence). 

� Lists may contain duplicate elements. In 
addition to the operations inherited from 
Collection, the List interface includes 
operations for: 

• Index based Access: manipulate elements based on their 
numerical position in the list. 

• Search: search for a specified object in the list and return 
its index position. 

• List Iteration: extend Iterator semantics to take advantage of 
the list's sequential nature. 

• Range-view: perform arbitrary range operations on the list. 



public interface List extends Collection 

{ // index based Access

Object get(int index); 

Object set(int index, Object element); 

// Optional 

void add(int index, Object element); 

Object remove(int index); 

abstract boolean addAll(int index, Collection c); // 

Search int indexOf(Object o);

int lastIndexOf(Object o); 

ListIterator listIterator(); 

ListIterator listIterator(int index); 

// Range-view 

List subList(int from, int to); } 



� Two important List implementations
◦ ArrayList

◦ LinkedList



� Iterators allow collection to be accessed using a pre-defined 
“pointer”

public interface ListIterator extends Iterator { 
boolean hasNext(); 
Object next(); 
boolean hasPrevious(); 
Object previous(); 
int nextIndex(); 
int previousIndex(); 
void remove(); 
// Optional 
void set(Object o); 
void add(Object o); 

} 



� What is the purpose of the following code?

for (ListIterator i=L.listIterator(l.size()); i.hasPrevious(); ) 
{ Foo f = (Foo) i.previous(); ... } 

◦ Steps through a list backwards



� Maps keys to values
� Each Key can map to a unique value
public interface Map { 

// Basic Operations 
Object put(Object key, Object value); 
Object get(Object key); 
Object remove(Object key); 
boolean containsKey(Object key); 
boolean containsValue(Object value); 
int size(); 
boolean isEmpty(); 
// Bulk Operations 
void putAll(Map t); 
void clear(); 
// Collection Views 
public Set keySet(); 
public Collection values(); 
public Set entrySet(); 

// Interface for entrySet elements 
public interface Entry { Object getKey(); Object getValue(); Object setValue(Object value); }

} 



� HashTable is an implementation of the Map interface

� An example of generating a frequency table

import java.util.*; 
public class Freq { 

private static final Integer ONE = new Integer(1); 
public static void main(String args[]) { 

Map m = new HashMap(); 
// Initialize frequency table from command line 
for (int i=0; i<args.length; i++) { 

Integer freq = (Integer) m.get(args[i]); 
m.put(args[i], 

(freq==null ? ONE : new Integer(freq.intValue() + 1)));
} 
System.out.println(m.size()+" distinct words detected:");        
System.out.println(m); 

} 
} 



� The Java provides a reusable algorithms 
that can operate on a List. The following 
algorithms are provided. 
◦ Sorting
◦ Shuffling
◦ Routine Data Manipulation
◦ Searching
◦ Composition
◦ Finding Extreme Values



� A List can be sorted according to its 
natural ordering 

� Java uses an optimized merge sortJava uses an optimized merge sortJava uses an optimized merge sortJava uses an optimized merge sort
◦ FastFastFastFast: runs in n log(n) time

◦ Runs faster on nearly sorted lists. 

◦ StableStableStableStable: It doesn't reorder equal elements. 



import java.util.*; 

public class Sort { 

public static void main(String[] args) { 

List list = new ArrayList(); 

list.add(“guna”); list.add(“bob”); //etc…     

Collections.sort(list); 

System.out.println(list); 

} 



� Shuffle algorithm does the opposite of sort

� It puts elements in the list in a random order 
so that each element is equally likely

� Applications
◦ Shuffle a card deck

� Example:
◦ Collections.shuffle(list);



� Reverse
◦ reverses the order of the elements in a List. 

� Fill
◦ overwrites every element in a List with the specified value. 

This operation is useful for reinitializing a List. 
� Copy
◦ takes two arguments, a destination List and a source List, and 

copies the elements of the source into the destination, 
overwriting its contents. The destination List must be at least 
as long as the source. If it is longer, the remaining elements 
in the destination List are unaffected. 

� Swap
◦ swaps the elements at the specified positions in a List. 

� addAll 
◦ adds all the specified elements to a Collection. The elements 

to be added may be specified individually or as an array.
Source: java.sun.comSource: java.sun.comSource: java.sun.comSource: java.sun.com



� The binary search algorithm provides a way 
to search for a key.

� Example
◦ int pos = Collections.binarySearch(list, key); 

◦ if (pos < 0) l.add(-pos-1); 



� Frequency
◦ counts the number of times the specified element 

occurs in the specified collection 

� Disjoint
◦ determines whether two Collections are disjoint; 

that is, whether they contain no elements in 
common 


