Graph Algorithms

15-121 Introduction to Data Structures

Ananda Gunawardena

Review

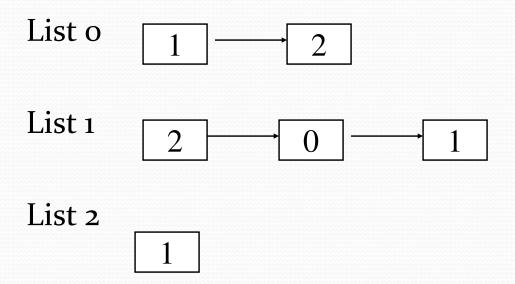
Graph Representations

Adjacency Matrix

- Adjacency Matrix
 - For each edge (v,w) in E, set A[v][w] = edge_cost
 - Non existent edges with logical infinity
- Cost of implementation
 - $O(|V|^2)$ time for initialization
 - $O(|V|^2)$ space
 - ok for dense graphs
 - unacceptable for sparse graphs

Adjacency List

- Adjacency List
 - Ideal solution for sparse graphs
 - For each vertex keep a list of all adjacent vertices
 - Adjacent vertices are the vertices that are connected to the vertex directly by an edge.
 - Example



Basic Graph Algorithms

Breadth First Traversal

- Algorithm
 - Start from any node in the graph
 - Traverse to its neighbors (nodes that are directly connected to it) using some heuristic
 - Next traverse the neighbors of the neighbors etc.. Until some limit is reach or all the nodes in the graph are visited
 - Use a queue to perform the breadth first traversal

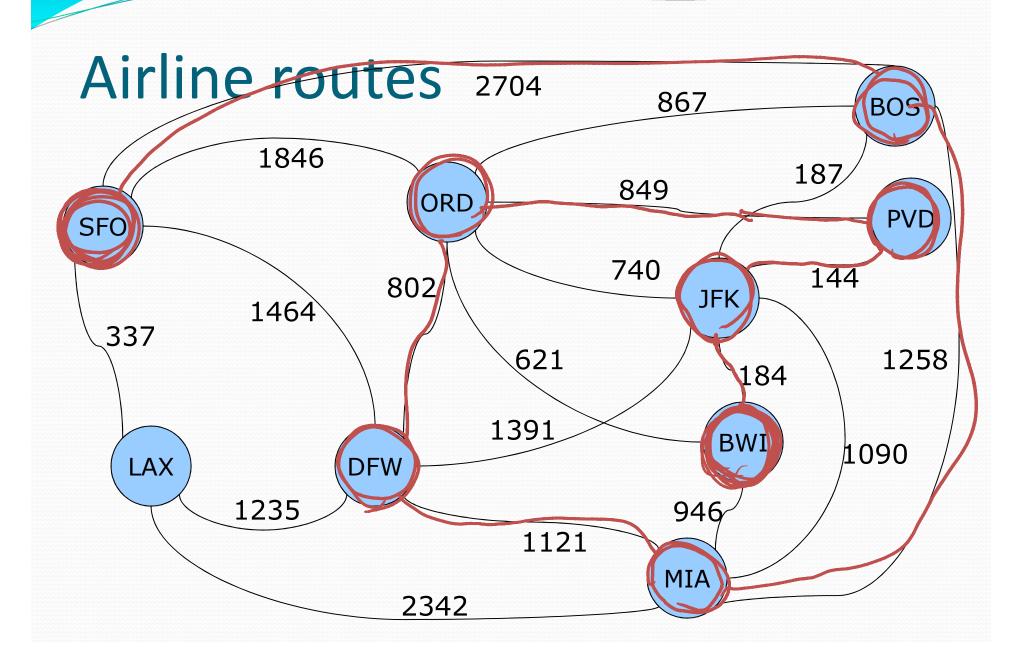
Depth First Traversal

- Algorithm
 - Start from any node in the graph
 - Traverse deeper and deeper until dead end
 - Back track and traverse other nodes that are not visited
 - Use a stack to perform the depth first traversal

Shortest Paths

Many applications

- Shortest paths model many useful real-world problems.
 - Minimization of latency in the Internet.
 - Minimization of cost in power delivery.
 - Job and resource scheduling.
 - Route planning.
 - MapQuest, Google Maps



Single-source shortest path

- Suppose we live in <u>Baltimore</u> (BWI) and want the shortest path to San Francisco (SFO).
 - Naïve Approach
- A Better way to solve this is to solve the single-source shortest path problem:
 - That is, find the shortest path from BWI to every city.

Why Need to Find ALL Shortest Paths?

• While we may be interested only in BWI-to-SFO, there are no known algorithms that are asymptotically faster than solving the single-source problem for BWI-to-every-city.

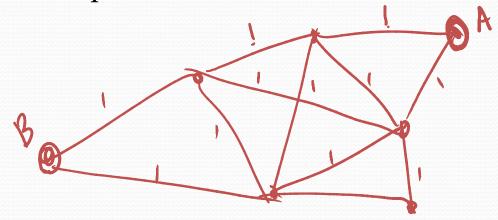
Shortest paths

- What do we mean by "shortest path"?
 - Minimize the number of layovers (i.e., fewest hops).
 - Unweighted shortest-path problem.
 - Minimize the total mileage (i.e., fewest frequent-flyer miles ;-).
 - Weighted shortest-path problem.

Unweighted Single-Source Shortest Path Algorithm

Unweighted shortest path

- In order to find the unweighted shortest path, we will mark vertices and edges so that:
 - vertices can be marked with an integer, giving the <u>number of hops</u> from the source node, and
 - edges can be marked as either <u>explored</u> or <u>unexplored</u>. Initially, all edges are <u>unexplored</u>.



Unweighted shortest path

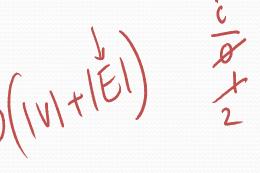
• Algorithm:

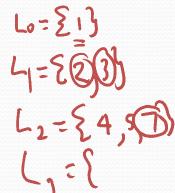
• Set i to o and mark source node v with o.

• Put source node $\underline{\mathbf{v}}$ into a queue L_o .

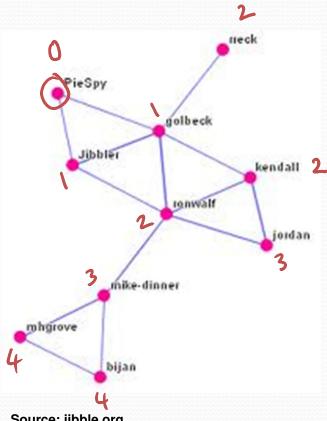
- While L_i is not empty:
 - Create new empty queue L_{i+1}
 - For each w in L_i do:
 - For each *unexplored* edge (w,x) do:
 - mark (w,x) as explored
 - if x not marked, mark with i+1 and enqueue x into L_{i+1}

• Increment i.





Example



Source: jibble.org

Complexity

- This algorithm is a form of *breadth-first search*.
- Performance: O(|V|+|E|). Why?

- *Q*: Use this algorithm to find the shortest route (in terms of number of hops) from BWI to SFO.
- *Q*: What kind of structure is formed by the edges marked as *explored*?

Use of a queue

- It is very common to use a queue to keep track of:
 - nodes to be visited next, or
 - nodes that we have already visited.
- Typically, use of a queue leads to a *breadth-first* visit order.
- Breadth-first visit order is "cautious" in the sense that it examines every path of length i before going on to paths of length i+1.

Next Dijkstra's Shortest Path Algorithm