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Graph Representations
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Adjacency Matrix

� Adjacency Matrix

� For each edge (v,w) in E, set A[v][w] = edge_cost

� Non existent edges with logical infinity

� Cost of implementation

� O(|V|2) time for initialization

� O(|V|2) space 

� ok for dense graphs

� unacceptable for sparse graphs
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Adjacency List
� Adjacency List

� Ideal solution for sparse graphs

� For each vertex keep a list of all adjacent vertices

� Adjacent vertices are the vertices that are connected to the vertex 
directly by an edge.

� Example

List 0

List 1

List 2
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Basic Graph Algorithms
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Breadth First Traversal
� Algorithm

� Start from any node in the graph

� Traverse to its neighbors (nodes that are directly 
connected to it) using some heuristic

� Next traverse the neighbors of the neighbors etc.. Until 
some limit is reach or all the nodes in the graph are 
visited

� Use a queue to perform the breadth first traversal
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Depth First Traversal
� Algorithm

� Start from any node in the graph

� Traverse deeper and deeper until dead end

� Back track and traverse other nodes that are not visited

� Use a stack to perform the depth first traversal
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Shortest Paths



Many applications
� Shortest paths model many useful real-world 

problems.

� Minimization of latency in the Internet.

� Minimization of cost in power delivery.

� Job and resource scheduling.

� Route planning.

� MapQuest, Google Maps
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Single-source shortest path

� Suppose we live in Baltimore (BWI) and want the 
shortest path to San Francisco (SFO).

� Naïve Approach

� A Better way to solve this is to solve the single-source 
shortest path problem:

� That is, find the shortest path from BWI to every city.



Why Need to Find ALL Shortest Paths?

� While we may be interested only in BWI-to-SFO, there 
are no known algorithms that are asymptotically faster 
than solving the single-source problem for BWI-to-
every-city.



Shortest paths
� What do we mean by “shortest path”?

� Minimize the number of layovers (i.e., fewest hops).

� Unweighted shortest-path problem.

� Minimize the total mileage (i.e., fewest frequent-flyer 
miles ;-).

� Weighted shortest-path problem.



Unweighted Single-Source
Shortest Path Algorithm



Unweighted shortest path
� In order to find the unweighted shortest path, we will 

mark vertices and edges so that:

� vertices can be marked with an integer, giving the 
number of hops from the source node, and

� edges can be marked as either explored or unexplored.  
Initially, all edges are unexplored.



Unweighted shortest path
� Algorithm:

� Set i to 0 and mark source node v with 0.

� Put source node v into a queue L0.

� While Li is not empty:

� Create new empty queue Li+1

� For each w in Li do:

� For each unexplored edge (w,x) do:

� mark (w,x) as explored

� if x not marked, mark with i+1 and enqueue x into Li+1

� Increment i.



Example
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Source: jibble.org



Complexity
� This algorithm is a form of breadth-first search.

� Performance: O(|V|+|E|). Why?

� Q: Use this algorithm to find the shortest route (in 
terms of number of hops) from BWI to SFO.

� Q: What kind of structure is formed by the edges 
marked as explored?



Use of a queue
� It is very common to use a queue to keep track of:

� nodes to be visited next, or

� nodes that we have already visited.

� Typically, use of a queue leads to a breadth-first visit 
order.

� Breadth-first visit order is “cautious” in the sense that 
it examines every path of length i before going on to 
paths of length i+1.



Next

Dijkstra’s Shortest Path Algorithm
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