
15-121

Introduction to Data Structures

8/1/2011 1

Ananda Gunawardena

Review

8/1/2011 2

Graph Representations

8/1/2011 3

Adjacency Matrix

� Adjacency Matrix

� For each edge (v,w) in E, set A[v][w] = edge_cost

� Non existent edges with logical infinity

� Cost of implementation

� O(|V|2) time for initialization

� O(|V|2) space

� ok for dense graphs

� unacceptable for sparse graphs

8/1/2011 4

Adjacency List
� Adjacency List

� Ideal solution for sparse graphs

� For each vertex keep a list of all adjacent vertices

� Adjacent vertices are the vertices that are connected to the vertex
directly by an edge.

� Example

List 0

List 1

List 2

8/1/2011 5

1 2

2 0 1

1

Basic Graph Algorithms

8/1/2011 6

Breadth First Traversal
� Algorithm

� Start from any node in the graph

� Traverse to its neighbors (nodes that are directly
connected to it) using some heuristic

� Next traverse the neighbors of the neighbors etc.. Until
some limit is reach or all the nodes in the graph are
visited

� Use a queue to perform the breadth first traversal

8/1/2011 7

Depth First Traversal
� Algorithm

� Start from any node in the graph

� Traverse deeper and deeper until dead end

� Back track and traverse other nodes that are not visited

� Use a stack to perform the depth first traversal

8/1/2011 8

Shortest Paths

Many applications
� Shortest paths model many useful real-world

problems.

� Minimization of latency in the Internet.

� Minimization of cost in power delivery.

� Job and resource scheduling.

� Route planning.

� MapQuest, Google Maps

Airline routes

PVD

BOS

JFK

ORD

LAX

SFO

DFW

BWI

MIA

337

2704

1846

1464

1235

2342

802

867

849

740

187

144

1391

184

1121

946

1090

1258621

Single-source shortest path

� Suppose we live in Baltimore (BWI) and want the
shortest path to San Francisco (SFO).

� Naïve Approach

� A Better way to solve this is to solve the single-source
shortest path problem:

� That is, find the shortest path from BWI to every city.

Why Need to Find ALL Shortest Paths?

� While we may be interested only in BWI-to-SFO, there
are no known algorithms that are asymptotically faster
than solving the single-source problem for BWI-to-
every-city.

Shortest paths
� What do we mean by “shortest path”?

� Minimize the number of layovers (i.e., fewest hops).

� Unweighted shortest-path problem.

� Minimize the total mileage (i.e., fewest frequent-flyer
miles ;-).

� Weighted shortest-path problem.

Unweighted Single-Source
Shortest Path Algorithm

Unweighted shortest path
� In order to find the unweighted shortest path, we will

mark vertices and edges so that:

� vertices can be marked with an integer, giving the
number of hops from the source node, and

� edges can be marked as either explored or unexplored.
Initially, all edges are unexplored.

Unweighted shortest path
� Algorithm:

� Set i to 0 and mark source node v with 0.

� Put source node v into a queue L0.

� While Li is not empty:

� Create new empty queue Li+1

� For each w in Li do:

� For each unexplored edge (w,x) do:

� mark (w,x) as explored

� if x not marked, mark with i+1 and enqueue x into Li+1

� Increment i.

Example

8/1/2011 18

Source: jibble.org

Complexity
� This algorithm is a form of breadth-first search.

� Performance: O(|V|+|E|). Why?

� Q: Use this algorithm to find the shortest route (in
terms of number of hops) from BWI to SFO.

� Q: What kind of structure is formed by the edges
marked as explored?

Use of a queue
� It is very common to use a queue to keep track of:

� nodes to be visited next, or

� nodes that we have already visited.

� Typically, use of a queue leads to a breadth-first visit
order.

� Breadth-first visit order is “cautious” in the sense that
it examines every path of length i before going on to
paths of length i+1.

Next

Dijkstra’s Shortest Path Algorithm

8/1/2011 21

