Ananda Gunawardena

8/1/2011

%w

Review

8/1/2011 v

N

Graph Representations

%jacency Ma |

* Adjacency Matrix
 For each edge (v,w) in E, set A[v][w] = edge_cost
e Non existent edges with logical infinity
* Cost of implementation
e O(|V]?) time for initialization
e O(|V]?) space
« ok for dense graphs
 unacceptable for sparse graphs

8/1/2011 4

djaceﬁcy List

* Adjacency List

8/1/2011

e Ideal solution for sparse graphs
e For each vertex keep a list of all adjacent vertices

e Adjacent vertices are the vertices that are connected to the vertex
directly by an edge.

e Example

List o 1 |— >

List1

List 2

N

Basic Graph Algorithms

P

Breadth First Traversal

* Algorithm
e Start from any node in the graph

e Traverse to its neighbors (nodes that are directly
connected to it) using some heuristic

e Next traverse the neighbors of the neighbors etc.. Until
some limit is reach or all the nodes in the graph are
visited

e Use a queue to perform the breadth first traversal

8/1/2011 7

epth First Traversal

* Algorithm
e Start from any node in the graph
e Traverse deeper and deeper until dead end
e Back track and traverse other nodes that are not visited
e Use a stack to perform the depth first traversal

8/1/2011 8

%w

Shortest Paths

N

Many applications
Shortest @odel many useful real-world

problems.

e Minimization of latency in the Internet.

e Minimization of cost in power delivery.
e Job and resource scheduling.

e Route planning.
« MapQuest, Google Maps

Single-source shortest path

* Suppose we live in Baltimore (BWI) and want the
shortest path to San Francisco (SFO).

e Naive Approach
WS is to solve th@
shortest path problem:
e That is, find the

ortest path from BWI to every city.

Why Need to Find’ALL Shortest Paths?

* While we may be interested only in BWI-to-SFO,)there
ar@own alqorlthm hat are asymptoticdlly faster
thanso e-source problem for BWI-to-
every-city.

ortest paths

* What do we mean by “shortest path”?

e Minimize the number of layovers (i.e., fewest hops).
« Unweighted shortest-path problem.

e Minimize the total mileage (i.e., fewest frequent-flyer
miles ;-).
« Weighted shortest-path problem.

@Singleﬁource
ortest Path Algorithm

N

Unweighted shortest path

* In order to find the unweighted shortest path, we will
mark vertices and edges so that:

e vertices can be marked with an integer, giving the
number of hops from the source node, and

* edges can be marked as either explored or unexplored.
Initially, all edges are unexplored.

nweig;hted shortest path

* Algorithm:
o Se and mark source node v with o.
e Put source node v into a queue L. @?X
e While é is not empty:
 Create new empty queue L,
- For eacl-@in 5 do:
- For each unexplored edge (w,x) do:

- mark (w x) as explored \ &

- if x not marked mark with i+1 and enqueue x into L.

1+1

» Increment i. ¢ Lo= ZPJ

= \ r =i@@)
| @ '
\\‘\)(V% thiq')@
ol >t

xample

N
- 4 Dija
g

Y

Source: jibble.org

8/1/2011

18

Complexity

* This algorithm i of breadth-first search.
* Performance: O(|V|+|E|).\Why?

* (Q: Use this algorithm to find the shortest route (in
terms of number of hops) from BWI to SFO.

® Q: What kind of structure is formed by the edges
marked as explored?

P S

Use of a queue

* [t is very common to use a queue to keep track of:
e nodes to be visited next, or
e nodes that we have already visited.

* Typically, use of a queue leads to a breadth-first visit
order.

* Breadth-first visit order is “cautious” in the sense that
it examines every path of length i before going on to
paths of length i+1.

N

Next
Dijkstra’s Shortest Path Algorithm

8/1/2011

