Graph Algorithms

15-121

Introduction to Data Structures

Ananda Gunawardena

8/2/2011 1

In this lecture..

Main idea is finding the Shortest Path
between two points in a Graph

We will look at

Graphs with non negative cost edges
Dijkstra’s Algorithm

Shortest Paths

Airline routes

1846

2704

How to find the shortest Path?

The naive solution is
O(n!)

Greedy Algorithms

Greedy Algorithms

In a greedy algorithm, during each phase,
a decision is made that appears to be
optimal, without regard for future
conseqguences.

This “take what
is the source of the nam
algorithms.

When a problem can be solved with a
reedy algorithm, we are usually quite

appy

Greedy algorithms often match our
thLIl_ltlon and make for relatively painless
coding.

you can get now” strategy
e for this class o

Greedy Algorithms

4 ingredients needed

Optimization problem
Maximization or minimization

Can only proceed in stages
No direct solution available

Greedy Choice Property

A locally optimal solution (greedy) will lead to a
globally optimal solution

Optimal Substructure

An optimal solution to the problem contains, within it
the optimal solution to the sub problem

Examples

Find the minimum number of coins
necessary to change 63 cents

Assume we have 25-cent, 10-cent, 5-
cent, 1-cent coins

Dijkstra’s algorithm for shortest
paths

Next...

Shortest Path Algorithm
for
Non-negative weights

(Dijkstra’s Algorithm)

Weighted shortest path

Now suppose we want to minimize
the total mileage.

Breadth-first search does not work!

Minimum number of hops does not
mean minimum distance.

Consider, for example, BWI-to-DFW:

Three 2-hop routes to DFW

2704 867 @
187
849
ORD PVD
802 740 @ 144
1258
ok
94

1121
2342 @

1846

Dijkstra’s Algorithm

Intuition behind Dijkstra’s alg.

For our@ﬁg@roblem, we
can start by sing that every city

IS -« miles away.

Mark each city with this guess.

Find all cities one hop away from

*‘w; and check whether the mileage
is less than what is currently marked
for that city.

If so, then revise the guess.

Continue for 2 hops, 3 hops, etc.

Dijkstra’s: Greedy algorithm

Assume that every city is infinitely far
away.

I.e., every city is o miles away from BWI
(except BWI, which is 0 miles away).

Now perform something similar to
breadth-first search, and optimistically
guess that we have found the best path
to each city as we encounter it.

If we later discover we are wrong and
find a better path to a particular city,
then update the distance to that city.

Label each node with the distance o, =
except start node, which is labeled W|th

distance 0.

D[v] is the distance label fo@

Ce"

Put all nodes into a priority queue Q,

using the distances as labels.
AT j p(A)=0
D | ob ,D, quwo’b

SRR

Dijkstra’s algorithm, cont’d

While Q is not empty do:

u = 0.removeMin

for each node z one hop away frorr@do:
i®+ miles(u,z) < D[z] then

D[z] = D[u] + miles(u,z)
change key of z in Q to D[z]

Note use of priority queue(Heap)
allows “finished” nodes to be found
quickly (in O(log |V]) time).

An Example

Shortest mileage from BWI

et
2704 867 @
ORD 849 187

Shortest mileage from BWI

2704 867 @

PVD

1846

oo

ORD 849 187
@ i
802 740 @ 144
1258
e
1121
2342 946

Shortest mileage from BWI

2704 867 @
1846
@ ORD 849 A ‘R\
621, <

Shortest mileage from BWI

2704 867 @

1846

Shortest mileage from BWI

Shortest mileage from BWI

1846

2342 946

Shortest mileage from BWI

2704 867 O

1846

ORD 849 B2

621 e

@ 328 /i
802 740 . 144

84 v 18

LAX D @ 1090 ¢
288 :,::

.....

Shortest mileage from BWI

Shortest mileage from BWI

Shortest mileage from BWI

2704 867 O
371

1846

ORD 849 187 T
621 o
‘ii;) 328
802 740 @ 144
B 1464
%337
. 1258
LAX - @ 090
658

D
1235 g
.

-

\J Ya “" U
. Yy .

LI an®
. "tamammann®

. 1121
............
.............................. 2342 946

Shortest mileage from BWI

2704 867 O
371
1846
ORD 849 PVD
40

621 328

1121

LAX
658

MIA
2342 946

Classwork

Find the Shortest Paths from S

©—2—@®
AN
2
®—®
5 i1

@+—@ @

1

Dijkstra’s Algorithm is greedy

Optimization problem

Of the many feasible solutions, finds the
minimum or maximum solution.

Can only proceed in stages
no direct solution available

Greedy-choice property:

A locally optimal (greedy) choice will lead
to a globally optimal solution.

Optimal substructure:

An optimal solution contains within it
optimal solutions to subproblems

Features of Dijkstra’s Algorithm

*"Visits” every vertex only once, when it
becomes the vertex with minimal distance
amongst those still in the priority queue

®* Distances may be revised multiple
times: current values represent ‘best
guess’ based on our observations so far

®* Once a vertex is finalized we are
guaranteed to have found the shortest
path to that vertex

Implementation

Heap is necessary to findMin

Initialization:@ A\ othw

_ W

V|S|tat|on Ioop n calls -
.
«Eachedge is considered only once

during entire execution, for a total
of e updates of the prlorlty queue

v\(h “{)

each hal A b y
/o "l
Overall cost: X —

__— Al
Sf“\’(

=

<

Question

Dijkstra’s only finds the length of the
shortest path

Is it possible to modify the Dijkstra’s
to actually find out the nodes in the

shortest path?

(_\Om/\ (e%“'n\:- p—

ARG BCDE

V)
000 Qvo 00\ 0\b

)4

Mv\\o\oe& > %ﬁ)_(s)cj\

]Rhecce :mm — &b
e

