Ananda Gunawardena

P

Merge Sort

B -
||||||||
........

o AL AL

S

Merging Two Sorted Arrays

» All the work in merge sort is done at the merge step.
* Example

PV VAW gD 2 15 27 38)
Ly A

N\’\ MQ‘W‘ M \J \OP\L

% Uk ey
.

ol g

P

Quick Sort

Q@Li@(&ﬁgfﬁlinvented in 1960 by Tony Hoare.

* Quicksort has ON2)}-worst-case performance, and on

® More importantly, it is thefaste known comparison-

based sortlng algorithm m@

. Qﬁ"\(

/

* Choose a pivot.

= Rearrange so that
pivot is in the “right” <
Spot. /

= Recurse on each half
and conquer!

P———

Quicksort algorithm

* If array A has 1 (or o) elements, then done.
* Choose a pivot element x from A.
* Divide A-{x} into two arrays:
* B=1{yeA|y=x}
e C={yeA |y2x]
* Result is B+{x}+C.
* Recurse on arrays B and C

P

Place the pivot algorithm

* Assume we have an array of size n
* Pick a pivot x
* Place the pivot x in the last place of the array
* Have two pointers1 = 0, J = n-2
while (i<=j) {
while (A[j] > pivot) j--;
while (A[i] < pivot) i--;
swap (A[i], A[j]);

}
swap (A[i], pivot);

" Example vaxic\uso(\r

* Show how to place the pivot (choose middle element)
in theTight place

® 34 24 56 17 19 45 90 23 36
> 50 ol 5h Muw\oz'g@

l/l]?\ 3; &— Swoef (P&Q“’)) A (”‘3])
23 3y %w % 36 \3Y
/2 /\L\o hi 2\, ?/»

!
93 29 {9 |/;l 56 L\S‘%“’@
L0

34
| 23 zct \‘\ 1 /5{&(5 1 %%‘

vlS“o'li(

/ . - ShG Lo > he
> lersammersy| Soq(p) Mw)

¢ o |

l0 i)

525

!
93 29 {9 |/;| 56 4\30'034’@
L0

= 5 - [0%

_ \
/{ @ } ?{\(o@u;}
, -

Ananda Gunawardena

Iﬁlﬁ)‘D eeso§tos£agljn %lps I!gt(?arl‘ are lxed
11

P

Naive Sorting

for i=1 to n-1
{ for j=o0 to n-i-1
if (A[j].compareTo(A[j+1])>0)
swap(Alj], Alj+1]);
if (no swaps) break;
)
* What happens if
o All keys are equal?
e Keys are sorted in reverse order?

e Keys are sorted?
 keys are randomly distributed?

* Exercise: Count the number of o%erations in bubble sort
and find a Big O analysis for bubble sort

P——

e Algorithm
for 1 =1 to n-1 do
insert a[i] in the proper place
in af[0:1-1]
e Correctness

eNote: after i steps, the sub-array A[O:i] is
sorted

To insert a[i] into a[0:i-1], slide all elements larger
than ali] to the right.

tmp = a[i];

for (j = i; j>0 && al[j-1]>tmp; j—-)
afj]l = alj-1];

al[j] = tmp;

of slides = O(#inversions)

very fast if array is nearly sorted to begin with

——

e Algorithm
for 1 = n-1 to 1 do
Find the largest entry in the
in the subarray A[0:1]

Swap with A[i]

What is the runtime complexity of
selection sort?

* Discuss the pros and cons of each of the naive sorting
algorithms

P

Advanced Sorting

P———

Qfla'sk@kalggtﬁltn In practice

* Algorithm
e Find a pivot
e Move all elements smaller than pivot to left
e Move all elements bigger than pivot to right
e Recursively sort each half
e O(n log n) algorithm

rge Sort

* Divide the array into two equal halves

* Divide each half recursively until each array is of size 1
* Merge two (sorted) arrays of size 1

* Complete the process recursively

eap Sort

* Build a max heap

* Delete Max (attach to end of array) until heap is empty
* Resulting array is sorted
* Complexity

P

Radix sort characteristics

* Each sorting step can be performed via bucket sort,
and is thus O(N).

* If the numbers are all b bits long, then there are b
sorting steps.

* Hence, radix sort is O(bN).

Wihat.a Roudt-N N alybes and

alphanumeric strings.

LN O = AN MO N
- M MMAON OAN LN

CO OO NN

ID O M <TT AN O

I ONAONMOMLWN O

OO —ANOOMN

—ONAONM<T N OO

MM ANNAHA O
OO AN—-NOO

N<T O —-0MAN
MANN—M™MWOWAN LN
ONOOO+HHAN

