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Merge Sort
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Merging Two Sorted Arrays

» All the work in merge sort is done at the merge step.
* Example
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Quick Sort



Q@Li@(&ﬁgfﬁlinvented in 1960 by Tony Hoare.

* Quicksort has ON2)}-worst-case performance, and on

® More importantly, it is thefaste known comparison-

based sortlng algorithm m@
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* Choose a pivot.

= Rearrange so that
pivot is in the “right” <
Spot. /

= Recurse on each half
and conquer!
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Quicksort algorithm

* If array A has 1 (or o) elements, then done.
* Choose a pivot element x from A.
* Divide A-{x} into two arrays:
* B=1{yeA|y=x}
e C={yeA |y2x]
* Result is B+{x}+C.
* Recurse on arrays B and C






P

Place the pivot algorithm

* Assume we have an array of size n
* Pick a pivot x
* Place the pivot x in the last place of the array
* Have two pointers1 = 0, J = n-2
while (i<=j) {
while (A[j] > pivot) j--;
while (A[i] < pivot) i--;
swap (A[i], A[j]);

}
swap (A[i], pivot);



" Example vaxic\uso(\r

* Show how to place the pivot (choose middle element)
in theTight place
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Naive Sorting

for i=1 to n-1
{ for j=o0 to n-i-1
if (A[j].compareTo(A[j+1])>0)
swap(Alj], Alj+1]);
if (no swaps) break;
)
* What happens if
o All keys are equal?
e Keys are sorted in reverse order?

e Keys are sorted?
 keys are randomly distributed?

* Exercise: Count the number of o%erations in bubble sort
and find a Big O analysis for bubble sort
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e Algorithm
for 1 =1 to n-1 do
insert a[i] in the proper place
in af[0:1-1]
e Correctness

eNote: after i steps, the sub-array A[O:i] is
sorted



To insert a[i] into a[0:i-1], slide all elements larger
than ali] to the right.

tmp = a[i];

for (j = i; j>0 && al[j-1]>tmp; j—-)
afj]l = alj-1];

al[j] = tmp;

# of slides = O(#inversions)

very fast if array is nearly sorted to begin with
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e Algorithm
for 1 = n-1 to 1 do
Find the largest entry in the
in the subarray A[0:1]

Swap with A[i]

What is the runtime complexity of
selection sort?



* Discuss the pros and cons of each of the naive sorting
algorithms
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Advanced Sorting



P———

Qfla'sk@kalggtﬁltn In practice

* Algorithm
e Find a pivot
e Move all elements smaller than pivot to left
e Move all elements bigger than pivot to right
e Recursively sort each half
e O(n log n) algorithm



rge Sort

* Divide the array into two equal halves

* Divide each half recursively until each array is of size 1
* Merge two (sorted) arrays of size 1

* Complete the process recursively



eap Sort

* Build a max heap

* Delete Max (attach to end of array) until heap is empty
* Resulting array is sorted
* Complexity
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Radix sort characteristics

* Each sorting step can be performed via bucket sort,
and is thus O(N).

* If the numbers are all b bits long, then there are b
sorting steps.

* Hence, radix sort is O(bN).
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alphanumeric strings.
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