
Ananda Gunawardena

Merge Sort

Divide-and-conquer

Merging Two Sorted Arrays

� All the work in merge sort is done at the merge step.

� Example

1 13 24 26 2 15 27 38

Quick Sort

Quicksort� Quicksort was invented in 1960 by Tony Hoare.

� Quicksort has O(N2) worst-case performance, and on
average O(N log N).

� More importantly, it is the fastest known comparison-
based sorting algorithm in practice.

Quicksort idea

� Choose a pivot.

� Rearrange so that
pivot is in the “right”
spot.

� Recurse on each half
and conquer!

Quicksort algorithm
� If array A has 1 (or 0) elements, then done.

� Choose a pivot element x from A.

� Divide A-{x} into two arrays:

� B = {y∈A | y≤x}

� C = {y∈A | y≥x}

� Result is B+{x}+C.

� Recurse on arrays B and C

Quicksort algorithm105 47 13 17 30 222 5 19

5 17 13 47 30 222 105

19

5 17 30 222 105

13 47

105 222

Place the pivot algorithm
� Assume we have an array of size n

� Pick a pivot x

� Place the pivot x in the last place of the array

� Have two pointers i = 0, j = n-2
while (i <= j) {

while (A[j] > pivot) j--;

while (A[i] < pivot) i--;

swap (A[i], A[j]);

}

swap (A[i], pivot);

Example
� Show how to place the pivot (choose middle element)

in the right place

� 34 24 56 17 19 45 90 23 36

Ananda Gunawardena

Naïve sorting algorithms
� Bubble sort: scan for flips, until all are fixed

3 2 1 6 5 4

2 3 1 6 5 4

2 1 3 6 5 4

2 1 3 5 6 4

2 1 3 5 4 6 Etc...

Naïve Sorting
for i=1 to n-1

{ for j=0 to n-i-1
if (A[j].compareTo(A[j+1])>0)

swap(A[j], A[j+1]);
if (no swaps) break;

}
� What happens if

� All keys are equal?
� Keys are sorted in reverse order?
� Keys are sorted?
� keys are randomly distributed?

� Exercise: Count the number of operations in bubble sort
and find a Big O analysis for bubble sort

Insertion sort

105 47 13 99 30 222

47 105 13 99 30 222

13 47 105 99 30 222

13 47 99 105 30 222

13 30 47 99 105 222

105 47 13 99 30 222

Sorted subarray

Insertion sort

• Algorithm

for i = 1 to n-1 do

insert a[i] in the proper place

in a[0:i-1]

• Correctness

•Note: after i steps, the sub-array A[0:i] is
sorted

How fast is insertion sort?

of slides = O(#inversions)

very fast if array is nearly sorted to begin with

tmp = a[i];

for (j = i; j>0 && a[j-1]>tmp; j--)

a[j] = a[j-1];

a[j] = tmp;

To insert a[i] into a[0:i-1], slide all elements larger
than a[i] to the right.

Selection sort

• Algorithm

for i = n-1 to 1 do

Find the largest entry in the

in the subarray A[0:i]

Swap with A[i]

What is the runtime complexity of

selection sort?

Sorting Comparison

� Discuss the pros and cons of each of the naïve sorting
algorithms

Advanced Sorting

Quick Sort� Fastest algorithm in practice

� Algorithm

� Find a pivot

� Move all elements smaller than pivot to left

� Move all elements bigger than pivot to right

� Recursively sort each half

� O(n log n) algorithm

Merge Sort
� Divide the array into two equal halves

� Divide each half recursively until each array is of size 1

� Merge two (sorted) arrays of size 1

� Complete the process recursively

Heap Sort
� Build a max heap

� Delete Max (attach to end of array) until heap is empty

� Resulting array is sorted

� Complexity

Radix sort characteristics
� Each sorting step can be performed via bucket sort,

and is thus O(N).

� If the numbers are all b bits long, then there are b
sorting steps.

� Hence, radix sort is O(bN).

What about non-binary?� Radix sort can be used for decimal numbers and
alphanumeric strings.

0 3 2
2 2 4
0 1 6
0 1 5
0 3 1
1 6 9
1 2 3
2 5 2

0 3 1
0 3 2
2 5 2
1 2 3
2 2 4
0 1 5
0 1 6
1 6 9

0 1 5
0 1 6
1 2 3
2 2 4
0 3 1
0 3 2
2 5 2
1 6 9

0 1 5
0 1 6
0 3 1
0 3 2
1 2 3
1 6 9
2 2 4
2 5 2

