
Ananda Gunawardena

The problem of sorting

Flips and inversions

Naïve sorting algorithms
� Bubble sort: scan for flips, until all are fixed

3 2 1 6 5 4

2 3 1 6 5 4

2 1 3 6 5 4

2 1 3 5 6 4

2 1 3 5 4 6 Etc...

Naïve Sorting
for i=1 to n-1

{ for j=0 to n-i-1
if (A[j].compareTo(A[j+1])>0)

swap(A[j], A[j+1]);
if (no swaps) break;

}
� What happens if

� All keys are equal?
� Keys are sorted in reverse order?
� Keys are sorted?
� keys are randomly distributed?

� Exercise: Count the number of operations in bubble sort
and find a Big O analysis for bubble sort

Insertion sort

105 47 13 99 30 222

47 105 13 99 30 222

13 47 105 99 30 222

13 47 99 105 30 222

13 30 47 99 105 222

105 47 13 99 30 222

Sorted subarray

Insertion sort

• Algorithm

for i = 1 to n-1 do

insert a[i] in the proper place

in a[0:i-1]

• Correctness

•Note: after i steps, the sub-array A[0:i] is
sorted

How fast is insertion sort?

of slides = O(#inversions)

very fast if array is nearly sorted to begin with

tmp = a[i];

for (j = i; j>0 && a[j-1]>tmp; j--)

a[j] = a[j-1];

a[j] = tmp;

To insert a[i] into a[0:i-1], slide all elements larger
than a[i] to the right.

Selection sort

• Algorithm

for i = n-1 to 1 do

Find the largest entry in the

in the subarray A[0:i]

Swap with A[i]

What is the runtime complexity of

selection sort?

Sorting Comparison

� Discuss the pros and cons of each of the naïve sorting
algorithms

Sorting, in a different way

Bucket Sort

Bucket sort

� In addition to comparing pairs of elements, we require
these additional restrictions:

� all elements are non-negative integers

� all elements are less than a predetermined maximum
value

� Elements are usually keys paired with other data

Bucket sort
1 3 3 1 2

1 2 3

Bucket sort characteristics
� Runs in O(N) time.

� Easy to implement each bucket as a linked list.

� Is stable:

� If two elements (A,B) are equal with respect to sorting,
and they appear in the input in order (A,B), then they
remain in the same order in the output.

Radix Sort

Radix sort
� If your integers are in a larger range then do bucket

sort on each digit

� Start by sorting with the low-order digit using a
STABLE bucket sort.

� Then, do the next-lowest,and so on

Radix sort
� Example:

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

2
0
5
1
7
3
4
6

0
1
2
3
4
5
6
7

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Each sorting step must be stable.

Radix sort
� Example:

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

2
0
5
1
7
3
4
6

0
1
2
3
4
5
6
7

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Each sorting step must be stable.

Radix sort characteristics
� Each sorting step can be performed via bucket sort,

and is thus O(N).

� If the numbers are all b bits long, then there are b
sorting steps.

� Hence, radix sort is O(bN).

What about non-binary?� Radix sort can be used for decimal numbers and
alphanumeric strings.

0 3 2
2 2 4
0 1 6
0 1 5
0 3 1
1 6 9
1 2 3
2 5 2

0 3 1
0 3 2
2 5 2
1 2 3
2 2 4
0 1 5
0 1 6
1 6 9

0 1 5
0 1 6
1 2 3
2 2 4
0 3 1
0 3 2
2 5 2
1 6 9

0 1 5
0 1 6
0 3 1
0 3 2
1 2 3
1 6 9
2 2 4
2 5 2

