Ananda Gunawardena

tructures so
* Arrays and ArrayLists(java only)

* Linked Lists - singly, doubly, circular, multi

» Stacks and Queues
\—\

* Binary Search Trees(N\) ((PJ >

L/

e Hash tables , ﬁik MAY O(h>

» Now to pW"

g\ /3\ 3/)\ — Pve Serehie — 3+(3"“9+(’5ﬂ°+z)+ 6
2

= = (@~
~— MM

i

=
3

A Data structure that /5

PGrocery Store Exan

* Suppose there are 5 people in line and each one
requires a service time (in mins) 10, 4, 5, 6, 12

* What is the average service time per customer?

Pyvez Ot t\(-q-\‘H-Zm. Z'L___ ”/_1‘
- 5

* Suppose we decided to service smaller times first.

o ——

* What is the average time now?

=

%w

Hence we can make things
efficient by dynamically
reorganizing things

We need a data structure
that can support that

!!!;5!!""!§===!!!Illlll'

What if we keep things in a
random array and always
serve the next min/max?

0(n)

What is we use a sorted
array?

I
O(0 H (v\ \»@v\>

e e
Priority Queue

(The Binary Heap)

* A priority queue is a container(data structure) that

supports the operations
@ item, priority) ——

e removeMin(). — Ol
e FindMin() SR

* There are many applications of Priority queues.
e Data Compression 2 X

S
W \
4

an support the following

i max femoveMih Mo

e Possible data structures " :
Vg \w
e Unordered list? !

- What is the insertion complexity? Removal complexity?

0(1) 0(n)

e Sorted List?

O (“) Q 0 ()
e What about a binary search

Complete Binary Trees

(iImplementing PQ’s)

O;é‘é%é\@

‘Representing complete
S

* Can be represented using
e Linked structures? (hard)

* Arrays! (easy)

"Representing complete bina

* Arrays }

\
e Parent at position i 6% Z 2
e Children at 2i and 23
' 3

NNeLaENE

.

;%% A Bl
-?/$:

@\@\4 | 3] 7 by
e

%esenting complete gma% |

* Arrays (1-based)

e Parent at positia@

e Children af 2iJand
Aq
112 34 5/ 6|7 8910‘

N

A @an be represented
usirng a complete binary
ftrk/ee

Pocket OFCrY

1darlr Hea opelfe]e ertres——="

Must satisfy two properties

1. Structure property

- Complete binary tree

« Hence: efficient compact representation
P ’

z.@p order prop/e@

. Parent keys less than children keys <

e Hence: rapid insert, findMin, and deleteMin
« O(log(N)) for insert and deleteMin b
- O(1) for findMin q

%xam le of a binary Hea !

A
(A2 @np)

e vlhi

ty Queue operation

* How to code a PQQ operations using a Heap?

* findMin() - I
e The code m]
public boolean isEmpty () {
return size == 0;

}
public Comparable findMin () ({

1f (isEm return null;
return(heap[1l);
}

* FindMin() does not change the tree
e Trivially preserves the invariant

Insert Operation

the new element into next leaf position (to maintain

complete tree property) and then swap it up as long as
it's <= its parent

* More formally...

o\
* Process e

1. Createa “h ree cell for x.

This preser
assuming it was complete to begin with.

the hole up the tree until the heap order property

is satisfied.

This assures the heap order property is satistied assuming
it held at the outset.

ation up
I ——

* Bubble the hole up the tree until the heap order
property(HOP) is satisfied.

I=11
HOP false

%w

Percolation up

* Bubble the hole up the tree until the heap order
property is satisfied.

p____——=

E@lﬁﬁb@ I@Ih@@uytpe tree until the heap order

property is satisfied.

Percolation up
public void(Comparable x) throws
Overflow ']\

{ -
if (isFull()) ow new Overflow() ; ‘ 9
for(int i = C::'jé; - ¥ < L\V(E/)

7

T @_ﬁ;{@iheap [1/2])<0;
i/=2) =

heap[i] = heap[i/2];} 0, S, t“
e O
} @ |

%w

Examples

N Qo} :

- @osﬁW f (e 4 dabe byt

Aok fods wodin & O())
NGNS . boe O(("B"‘)

