Hashing

15-121
Data Structures

Ananda Gunawardena

Hashing

Why do we need hashing?

Many applications deal with lots of data
Search engines and we

"here are myriad/look ups.
"he look ups aretime critical. /g’ﬂdg(“’é”‘)

'ypical data structures like arrays and
lists, may not be sufficient to handle
efficient lookups

In general: When look-ups need t
occur in near constant time. O(1)

St) Find)\/\6)(10\\& O())

_0(n) o(~)

>f
—
(@
O
—
)
2
-
P
>
cC-
I
(-
s
c/{"
<

- 20)
Why do we need hashing? Zeh’;H

Consider the internet(2002 data):

By the Internet Software Consortium

survey at http7//www.isc.org/ in 2001
(}&b there are 125,888,197 internet hosts,
" .

and the nu owing by 20%
, every six month!

Mb Wq Using the best possible binary search

L0 O. it takes on average 27 iterations to
B lO(S find an entry. —— 5V

0" By an survey by NUA at
4 \o\% http://www.nua.ie/ there are 513.41

million users world wide.

Why do we need hashing?

We need something that can do
n a binary search,

O(log N

We want,/O(1).

Solution: Hashing
In fact hashing is used in:

Web searches M
Compilers

password Many others

Building an index using HashMaps

WORD

jezebel

jezer

jezerit

jeziah

jeziel

a

jezliah

jezoar

jezrahliah

jezreel

=
822 < a a]aluB 8

|

More on this in Graphs...

DOCID OCCUR POS1

POS 2

A 6 1 118| 2087 3922| 3981
44 3| 215 2291 3010

56 4 5 22 134| 992

566 3| 203| 245 287

67 1| 132

The concept

Suppose we need to find a better
way to maintain a table
(Example: a Dictionary) that is
easy to insert and search in
O(1).

(

_—

Big Idea in Hashing M < N

Let S pe a set of objects that
we ne into a table of size N N

Find a function such that H:S= [1.. n]

Ideally we'd like to have a 1-1 map

But it is not eas ind-one EZ”U‘)Z“S}

Also function must beleasy to compute

It is a good idea to pick a prime as the table

size to have a better distribution of values
Assume a. jis a 16—biE integer. | 0> 21

Of course there is a trivial map| H(a;)=a;

But this may not be practical. Why: % Al

desdspe TTITT 173, 7)1

n’l4

Finding a hash Function

Assume that@and the values
we need to insert are:@,,

etc. 3 7,
bl |
S

Y
|

1
Let a=0, b=1, c=2, etc | | ‘@“"
N

——

Define H such that

Hldata] = (X characters) Mod@
Hlcab] = (2+0+1) Mod 5 = 3
H[bea] = (1+44+0) Mod 5 =0
H[bad] = (1+40+3) Mod 5 =4

-
-

Collisions

What if the values we need to insert
are “abc” , ’ etc...

They all map to the same location
based on our map H (obviously H is not a good

hash map)
This is caIIe
@sions occur, we need to
handle”’them

Collisions can be reduced with a selection
of a good hash function

avb l\\{

Choosing a Hash Function _ %o vt/us

Ag@ function must
Be easy to compute

Avoid collisions
How do we find a good hash function?

A bad hash functi et

Let S be a string and H(S) = Z S,)where S; is the ith
character of S 10

Why is this bad?
0\\\6 Xe,m At J>f S.L'f will orealr (e

YRRV IRY Q‘fb O\\u’sw\)

SDSISZ' - Sn"

Choosing a Hash Function?

(Question

Think of hashin ;@ b-letter words into a
table of size 10000 using the map H defined as

follows.

%(aoal%asazl = Z\J 08 £25¢
If we use H, what would be the key

distribution like? 694

W!)

L\Mr“ﬁub

Choosing a Hash Function

Suppose we need to hash a set of strings
S ={S,} to a table of size N

H(S) = (Z Silj1{d)) mod N, where Si[j] is
the jt character of string S,

How expensive is to compute this function?
= [. 70 < -
cost with direct calculation ~=9)b (/c ey

0 e /s _ o
H(ﬁ\b(/ :la.z 1»5.2‘._9 C.«li), E/‘, ~
W"‘@) o w T S4]]s =4

Is it always possible to-do direct calculation?

Is th ch r way to calculate this? Hint:
us Hornew

-

Computi

~\ —_ : _—.r%guq‘gj-‘-r--..-- e o
e . —

Q.2 +b.2 = C

S

2+d.7 v e.

b WL I T

(I} < Code(i(gurid 1 D)
' (= \
“Tileli[elg =% \ SERTTEN

public static int hash(String key, int 2){

int value = 0;

for (int i=0; i<key.ll,eggt'1(); i++)
@ = (Vv aiuejl§9+ Key.charAt(i m
return value; S

} (=2
What does this function re if "guna” is
hashed into a table of size\101? (230
What is the complexity of code in terms of string
length?(») 0(n)
What are some of the problems with this
function?

Collisions) ,7%‘*

Hash functions can be many-to-1

They can map different search keys to
the same hash key.

hashl(a) == == hashl(w)

Must compare the search key with

the record found
If the match fails, there is @

Collision Resolving strategies

Separate chaining
Open addressing

Quadratic Probing
Double Probing
Etc.

Separate Chaining

Collisions can be resolved by
creating a list of keys that map to
the same value

As &> fooe®r bar
with
long
keye++ link o— ur| o= |ist
int ®t* chare—topen
hash

find

in e+ ontoe—+type—queue

testor> fail
info

Immmi

[|
] e P e S R Y L BN P N B

Separate Chaining

Use an array of linked lists
LinkedList[] Table;

Table = new LinkedList(N), where N is the
table size

Define Load Factor of Table as
A = number of keys/size of the table
(A can be more than 1)

Still need a good hash function to
distribute keys evenly
For search and updates

Linear Probing

The idea:
Table remains a simple array of size N

On | compute f(x) mod N, if
mﬂnd another by

seque ilally searching for the next

availabl

On find(x), co te f(x) mod N, if the

cell doesn’ t match Iook elsewhere

Linea can be given by
h(x, i) = gfgx) + i) mod N)(i=)
\\"“

TR
v

Figure 20.4 g
Linear probing hash s 9 V*(V"O) "M‘DO /oN

hash table after e e %8 % = g

each insertion ds = 91|
hash (10) = 8.4 %{/L)EHZ
hash (9 10)=/1..| A4 q{g/

J
After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

0 / 49 49
\\"*3\‘@50 -, - /z:
3 i’lS(. —
s -
6
8 B @)/ 18 & 18 18
9 @9/ 89 89 «—| 89 89

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Linear Probing Example

Consider H(key) = key Mod 6 (assume N=6)
H(11)={5) H(10)=4, H(17)=5, H(16)=4,H(23)=5

)
b

(®

\0

Draw the Hash table
@
|0

wWw N = O

10
\|

LN A W NN = O
LN A W NN = O
LN A W NN = O
wn A W D = O
LN A W NN = O

ing Problem

« Clustering is a Significant problenYin linear probing. Why?

* lllustration of pri

ring in linear probing (b) versus no clustering

(a) and the less significant secondary clustering in quadrdtic-probing (c).
Long lines represent occupied cells, and the load factc @

(a)

(b)

(c)

#M No clustering 0.7 ~10| x|

QN

AT T

#f Linear Probing 0.7 -10] x|

LL L0

#) Quadratic probing 0.7 =10] %]

O

|"

L 1

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Linear Probing

How abo@ items from Hash

table?

Item in a hash table connects to others
in the table(eg: BST).

Deleting items will affect finding the
others

“Lazy Delete” - Just mark the items as
inactive rather than removing it.

Lazy Delete

Naive removal can leave gaps!

pOF"

0a N 0a 0a
273 ,
g @ 2b . 2b .1/ 2b
C <— 3c
3e 3
\’0‘ t 5d 5d 5d
(EE) 3f 3f
8j 8] 8j 8j)
8u 8u 8u 8u
10g 10g 10g 10 g
8s 8s 8s 8s

Insert f
Remove e
(Find f)

“3 f” means search key f and hash key 3

Lazy Delete

Clever removal

Insert f
Remove e
Find f
0a 0a 0a 0a
2b 2b 2b 2b L
3c &> 3c_
3e (3e) ‘® ¢ d,'U’
5d 5d 5d 5d _)
3f 3f 3f
8j 8j 8ij 8j
8u 8u 8u ch@.§
10 g 10 g 10 g 10g
8s 8s 8s 8s

“3 f” means search key f and hash key 3

S~ I LS WN=-0

Load Factor (open addressing)

definition: The /oad factor A of a probing
hash table is the fraction of the table
that is full. The load factor ranges from O
(empty) to 1 (completely full).

E)t ;s better to keep the load factor under

Double the table size and rehash if load
factor gets high

Cost of Hash function f(x) must be
minimized

When collisions occur, linear probing can
always find an empty cell

But clustering can be a problem

Quadratic Probing

Quadratic probing

Another open addressing method

Resolve collisions by examining certain

cells (1,4,9,...) away from the original
probe point

Collision policy:
Define hy(k), hy(k), ho(k), hs(k), ...
where h(k) = (hash(k) @) mod size
Caveat:

May not find a vacant cell!
Table must be less than half full (A < 12)
(Linear probing always finds a .

Quadratic probing

Another issue

Suppose the table size is 16.
Probe offsets that will be tried:

1

4

9
16
25
36
49
64
81

mod 16
mod 16
mod 16
mod 16
mod 16
mod 16
mod 16
mod 16
mod 16

| —

H O~ ph OO O M

\

only four different values!

Figure 20.6

A quadratic

probing hash table
after each

Insertion (note that

the table size was
poorly chosen
becauseitisnota O
prime number). 1

W,s\(’ﬂ)

hash (89,
hash (18,
hash (49,
hash (58,
hash (9,
After insert 89 After insert 18 After msen‘ 49 After :nsert 58 Afterinsert 9
49 49 49
Qe 587 58 &
%,\/ %‘ 9 \/
3
T1d
18 / 18 18 18
89 / 89 / 89 89 89

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

