Balanced Trees

15-121
Data Structures

Ananda Gunawardena

7/20/2011 1

A(Good\ Tree

In a "good" BST we have
depth of T =/O(log n)

n = num of nodes in the

@: f the tree is constructed from n inputs
given i then we can expect the depth
e

of the tree 0 b (no proof given)

eBut if the input is already (nearly, reverse,...) sorted
we are in trouble. i

7/20/2011 3

Forcing good behavior

e We can show that for @ there_always
is @ BST containing these elements of logarithmic
depth. R

eBut if we just insert the standard way, we may
build a very unbalanced, deep tree.

eCan we somehow force the tree to remain
shallow?

oAt low cost?

7/20/2011

Balanced Tr@

« A balanced tree is where equal (“almaost”)
number of nodes exists in left and right sub trees
of each node

— However in practice this is hard to enforce

* We can expect the trees to remain shallow by
“randomizing” a data set before inserting to a
tree

— Need O(n) operatlons to randomize the data set

- Aelaxed balanced condition)can be used in

bul od” tree
— AVL trees >

7/20/2011 5

ﬁft\‘/\ -4 pf = h\@
AVL Trees
Th(@)=- % o

* AVL trees requires a relaxed baIanjo

condition
» Definé "balanced fa@fa node to

the absolute di difference in heights between
left and right sub trees

 AVL tree is defl as a tree such that, for
each node; alanced factor < 1
T) 0
UY\L& V\o

I\I

7/20/2011

AVL-Trees

G. M. Adelson-Velskii and E. M. Landis,/ 1962

[) 1 or less

7/20/2011

AVL-Trees

An AVL-tree is a@with the property that at every

node the difference in the depth of the left and
right subtree is at most 1.

\ 1
/O\O| O/O\OL ;)*O—O’W
07 N\, 6 No O
V /
< not OK
OK

7/20/2011 8

Bad News

Insertion in an is more complicated:
inserting a new element as a leaf may break the
balance of the tree. - Q
— O
AVL NoT &V
But we can't just place the new element somewhere

else, we have to maintain the BST property.

insert in standard place, but then
rebalance jthe tree.

7/20/2011 9

But How?

The magic concep@ rotation rearranges
a BST, but preserve roperty.

——

Can be done out | @ é

To fix up an AVL tre perform several
rotations, but only @long a branch: total damage is
O(log #nodes).

7/20/2011 10

{
©
/@
A
h e e A< x< BLYES

7/20/2011 rotate left on x

So?

Rotation does not change the flattening, so we still
have a BST.

But the depth of the leaves change by -1 in A, stay
the same in B, and change by +1 in C.

7/20/2011 12

Well, not quite

Unfortunately, there are other cases to consider,
depending on where exactly the balance condition

IS violated.

To fix some of ther@uble @

There is a nice demo at:

http://www.site.uottawa.ca/~stan/csi2514/applet
s/avl/BT.html

7/20/2011 13

Tree Balance Rotations

* Note that after an insertion only the nodes
in the path from root to the node have their
balance information altered

* Find the node that violates the AVL
condition and rebalance the tree.

 Assume that X is the node that has
violated the AVL condition

— |l.e The left and right sub trees of X is differ by
2 In height.

7/20/2011 14

Four Cases — Case |

Case | — The left subtree of the left child of X violates the

property/\\\ Rotate RIGHT

/ (y)
D

7/20/2011

@(

7/20/2011

Write code for case 2

18

Four Cases — Case 3

Case 3 — The right subtree of the left child of X violates the

property
Rotate the tree LEFT
about X’s child and
Grandchild
-

7/20/2011 Ctd.. 19

7/20/2011

20

Four Cases — Case 3 ctd..

lllll

7/20/2011

Write code for case 3
using cases 1 and 2 code

23

Four Cases — Case 4

Case 4 — The left subtree of the right child of X violates the
property
Rotate the tree RIGHT
(: T about Y and 2 @
' g 2z
/@ / \
C /5\ A
7/26rzoT 24

Ctd..

Four Cases — Case 4 ctd..

Rtt th t e LEFT

Sy Tl
JoRRLLL

7/20/2011 25

e Insert 12,8, 7, 14, 18, 10, 20 with A
rotatlons

\L ﬁ7

7/20/2011

g
| A 1 — /2\
\ - /\ — |/ y? /Lf\
A I < / ! 3 y
N e 4 .
’ 3\ 3/
. |
\1
/Lr\
/Z\ ¢
o)

7/20/2011 27

7/20/2011

Write code for case 4
using cases 1 and 2 code

28

Implementing AVL trees

* The main complications are insertion and
deletion of nodes.

* For deletion:
— Don't actually delete nodes.

— Just mark-rodes_as deleted.
— Called lazy deletion.
7/20/2011

29

Lazy deletion

@v@e, @ti@ evé/; half of tl{én@e,s by

marking leads to depth penalty of onIy/l_.

7/20/2011

30

AVL Summary

 Insert a new node in left or right subtree.

» Test the height information along the path
of the insertion. If not changed we are
done

« Otherwise do a single or double rotation
based on the four cases

« Question: What is the best thing to do
about height info?

7/20/2011 31

