\V
15-J" : Advanced Programming
Final Exam Summer 2008
June 27, 2008

Name:

Andrew ID:

Answer the questions in the space provided following each question. We must be able to clearly
understand your answer. If it is vague or confusing, it wi d wrong. Be sure to read the
directions to each question carefully. Answers to mog#questions are NOT long. Just carefully
think abqat it before you write the answer. This exatf is worth 20% of your final grade. You
have 120 minutes.

/q\o‘

1. Runtime Complexity
0 (loyn)
(a) Assu @ is an implemented class and you have a method fCh has an

optimal Tmplementation, that finds the height of a balanced binaty-tfeg” ‘ —
WorsT=tase runtime complexity of the following code and why? _,l ~

N\ public int totalHeight(Arraylist<BST> list){
R _ int sum = 0; T
\ \ } for each (tree in list) (‘6‘\"(>
\— sum += height(tree);

‘,\ & return sum; |+ e (‘" (-TL‘)

Assume that hst contaln lem ts, an each b1 fee is ba a@d and contains N elements. '))
Yoo¥

(b) You have a method minLeaflLevel() thatfi leaf. The method is
as implemented below. What is its wfrst-case runtime complexity and whyR Justify your
answer. Assume that a binary tree has W-elements _

public int minLeafLevel() {

return minLeafLevel(root); \"”\Q(/ f e’ W 0
} & / \
private int mipleaflevel(Node p) { / /} &— M’ l

if (p == null) return -1;

if plefi=nul) = " 6 /é‘—' Lo L

return 1 + minLeafLevel(p.right);

if (p.right == null) N C ‘
return 1 + minLeafLevel(p.left); l é
else L}\HL%

| return 1 + Math min(minLeafLevel (p.left), minLffi/evel(p.right)); /’®
£ = 14w (§0), H3) . <
> 1)
0
OK .2)’ H{’uf*)

15(9).,

(c) You have a method fogbar(X) that iterates over each element in a one-dimensional array X.
What is the time complexity of the following code? Describe in terms of O(1), O(n), O(nz) or
O(n’). You need to justify the answer.

String [][](::9—— new String[n][n];
{for (intk =0; k < n; k++)

foobar(str[k]);

e A= wra BN
o) swlY” 1 1

2. Iterations.

Given two non- null S . write a method that finds the length

contiguous string s3 such that b th sl and s2 contain s3. You assume that input strings are in
— ——

lowercase.

. . | | I ¢
public int substringMax(String s1, String s2) S) _ ‘ . IV\MV‘V‘J“"

gz = \33_v~_'~}_k“q

S1—= ' SN"‘"

3. Recursion.

(a) Consider the following methods:

(/]
public void printl(int n, int m) {
if (m<n) {
System.out.print("*");
i printl(n, m+1);
} —
else if (m >n) {
System.out.print("-");
printl(n, m-1);

}
}

public void print2(int n, int m) {
if (n>0) {

printl (n, 0):&—
printl(n, m);
System.out.println(); 6
print2(n-1, m+1); &__

}

}

PL(F)S)

*r&)"

Ps)
% (S'])

— by

o m(!‘ ") KRl K
&/\ﬂ (S‘)3)
* P\ (S‘,u)

Show the output that would be produced by the call print2(5,5).

N\

x

@

k) aile)) ~
_b/

Ll

91(5'7)

4. Sorting. ‘3

Given %objects in memory (assume we have no memory constraints) all of type
HighSchoo ent: I(_t - ﬁ

public class HighSetmq ent { é
private Strin
private int numberOfY earsOld;

} o

What sorting algorithm would you use, and why would you use it, to
second field numberOfYearsOld? Consider all sorting algorithms
you would use a particular algorithm. Pay careful attention to ty

rt these objects by the
discussed and justify why
of the sort key.

1Z| E E}\ﬁ =
IV N

o I

=

5. Stacks and Queues.
(a) Given two FIFO queues with data i diOorder, move all data to a third queue so that the

third queue ends up with data again in sorted order. Implement your algoritmramd give its
worst-case mn@mﬂa@;y. You may use all the standard queue operations, No data structure
other than Queue can be us&d.

publi@merge(Queue Q1, Queue Q2){
‘Qo

oA Q=1 5 7
Q=2 &
Ql‘: 1 \'(5-7

y

(b) Discuss two advantages of the Queue implementation based on a linked list over the Queue
implementation based on an array.

6. Linked Lists.
(a) Is it possible to search a sorted, singly-linked list in worst-case O(log n)? If it is possible,
please explain an approach. If not, please explain your intuition.

(b) If it is likely that certain items within a linked list are more frequently used than others, the
average-case performance of searching a linked list can often be improved by moving an item to
the head of the list each time it is accessed. Please explain the intuition behind this technique.

7. Binary Search Tree.

(a) Given an array of numbers: 19, 6, 8, 11, 4, 13, 5, 27, 43, 49, 31, 25

Draw a binary search tree by inserting the above numbers from left to right and then show the
resulting tree after 19 is removed. Assume the BST class given in Listing 2.

(b) Given an array of numbers: 19, 6, 8, 11, 4, 13, 5, 27, 43, 49, 31, 25
Create an AVL tree by inserting and balancing the tree using single or double rotations. Show all

steps.

(c) Draw a binary tree 7T such that each node stores a single number and
a preorder traversal of 7 yields 15,7,4,9,12,10,17,22,20,18,25 and
an inorder traversal of T yields 4,7,9,10,12,15,17,18,20,22,25.

8. Hashing

(a) Exactly when would you use a hashtable to store a set of data?

(b) Given the keys, 97, 98, 67, 48, 98, 65, 45 and a table of size 10, show how the keys will be
stored if (use the function key mod 10)

(i) Linear Probing is used:

(i1) Quadratic probing is used:

Listing 1: The Linked List Class.
import java.util.*;

public class LinkedList {

private Node head;

/**

* Constructs an empty list

*/

public LinkedList() {

head = null;

}

/**

* Returns true if the list is empty

*/

public boolean isEmpty() {

return head == null;

}

/**

* Inserts a new node at the beginning of this list.
*/

public void addFirst(Object item) {
head = new Node(item, head);

}

/**

* Returns a string representation

*/

public String toString() {

StringBuffer result = new StringBuffer();
for(Node tmp = head; tmp != null; tmp = tmp.next)
result.append(tmp.data + " ");

return result.toString();

}

private static class Node {

private Object data;

private Node next;

public Node(Object data, Node next) {
this.data = data;

this.next = next;

}

}

}

Listing 2: The Binary Search Tree Class.
import java.util.*;

public class BST{

private Node root;

public BST(){

root = null;

}

/**

* Inserts a new item

*/

public void insert(Comparable data){
root = insert(root, data);

}
private Node insert(Node p, Comparable tolnsert){
if (p == null)

return new Node(tolnsert);

if (toInsert.compareTo(p.data) == 0)
return p;

if (toInsert.compareTo(p.data) < 0)
p-left = insert(p.left, tolnsert);

else

p.right = insert(p.right, toInsert);
return p;

}

/**

* Searches for an item

*/

public boolean search(Comparable toSearch){

return search(root, toSearch);

}
private boolean search(Node p, Comparable toSearch){
if (p == null)

return false;

else if (toSearch.compareTo(p.data) == 0)
return true;

else if (toSearch.compareTo(p.data) < 0)
return search(p.left, toSearch);

else

return search(p.right, toSearch);

}

private static class Node {

private Comparable data;

private Node left, right;

public Node(Comparable data) {

left = right = null;

this.data = data;

}

public Node(Comparable data, Node 1, Node r){
left =1; right =1;

this.data = data;

public String toString() {
return data.toString();

}

}

}

