Heap Sort

Suppose we have an unsorted array of comparable objects that need to be sorted. Assume that entries are in 1..n
First we will build a max heap by percolating down - this time we need to use the larger of the two children
Then we deleteMax. We will place the max at the end of the array, reduce the size of the heap by 1 and percolate down to maintain maxHeap property

Objectives
- Understanding quadratic and sub quadratic sorting algorithms
- Learning the algorithmic details about sub quadratic algorithms
- Understanding informal complexity arguments
- Worst case scenarios
- Summary of Sorting Algorithms

So far we learned...
- Sorting a data set can lead to easy algorithms for finding
 - Median, mode etc..
- \(O(n^2)\) sorting algorithms are easy to code, but inefficient for large data sets. However insertion sort is used widely in practice for small data sets
- Question : Why are bubble sort and selection sorts do not perform as well as insertion sorts?
- Next we consider
 - \(O(n \log n)\) sorting algorithms

Heap Sort Demo
- Start with 54 32 12 72 70
- Here is the max heap

Assume that entries are in 1..n
Heap Sort Demo ctd..
- Now move 72 to the back of the array and maintain the heap order property.

Heap Sort Demo ctd..
- Now move 70 to the back of the array and maintain the heap order property.

Heap Sort Demo ctd..
- Now move 62 to the back of the array (right most leaf node) and maintain the heap order property.

Heap Sort Demo ctd..
- Now move 54 to the back of the array (right most leaf node) and maintain the heap order property.

Heap Sort Exercise
- Sort 12 10 15 8 32 20 14 in descending order.

Heap Sort Code
- Pseudo code
 - Build a max/min heap
 - for i from n-1 down to 1
 - swap[A[i], A[i]]
 - Percolate A[i] down
Heapsort Analysis
- Recall from last time about heaps:
 - buildHeap has $O(N)$ worst-case running time.
 - removeMax has $O(\log N)$ worst-case running time.
- Heapsort:
 - Build heap. $O(N)$
 - DeleteMax until empty. $O(N\log N)$
 - Total worst case: $O(N\log N)$

N^2 vs Nlog N

Heapsort in practice
- In practice, heapsort consistently tends to use nearly $N\log N$ comparisons.
- So, while the worst case is better than N^2, other algorithms sometimes work better.

Sortin in $O(N\log N)$
- Heapsort establishes the fact that sorting can be accomplished in $O(N\log N)$ worst-case running time.
- The average-case analysis for heapsort is somewhat complex.
 - Beyond the scope

Recursive Sorting

Merge Sort
- Intuitively, divide the problem into pieces and then recombine the results.
 - If array is length 1, then done.
 - If array is length $N=1$, then split in half and sort each half.
 - Then combine the results.
- An example of a divide-and-conquer algorithm.
Merging Two Sorted Arrays
- All the work in merge sort is done at the merge step.
- Example

```
<---<--- <---<---
```

Exercise
- Write the merge code
  ```java
  public void merge( A, tmpArray, left, center + 1, right )
  ```
- Merges two sorted arrays A[left, center] and A(center+1, right] using tmpArray

Analysis of Merge Sort
- Suppose it takes time $T(N)$ to sort N elements.
- Suppose also it takes time N to combine the two sorted arrays.
- Then:
 - $T(1) = 1$
 - $T(N) = 2T(N/2) + N$, for $N>1$
- Solving for T gives the running time for the merge sort algorithm.
Remember recurrence relations?

- Systems of equations such as
 - $T(1) = 1$
 - $T(N) = 2T(N/2) + N$, for $N > 1$
are called recurrence relations (or sometimes recurrence equations).

A solution

- A solution for
 - $T(1) = 1$
 - $T(N) = 2T(N/2) + N$
 - is given by
 - $T(N) = N \log N + N$
 - which is $O(N \log N)$.

Generalization of Divide and Conquer

- **Corollary:** Dividing a problem into p pieces, each of size N/p, using only a linear amount of work at each stage, results in an $O(N \log N)$ algorithm.

Quicksort

- Quicksort was invented in 1960 by Tony Hoare.
- Quicksort has $O(N^2)$ worst-case performance, and on average $O(N \log N)$.
- More importantly, it is the fastest known comparison-based sorting algorithm in practice.

Quicksort idea

- Choose a pivot.
- Rearrange so that pivot is in the “right” spot.
- Recurse on each half and conquer!
QuickSort Algorithm
- If array A has 1 (or 0) elements, then done.
- Choose a pivot element \(x \) from A.
- Divide \(A - \{x\} \) into two arrays:
 - \(B = \{y \in A \mid y < x\} \)
 - \(C = \{y \in A \mid y \geq x\} \)
- Result is \(B \cup \{x\} \cup C \).
- Recurse on arrays \(B \) and \(C \).

Rearranging in Place

Recurse on Smaller Arrays

In practice, insertion sort is used once the arrays get "small enough".
Quick sort is fast but hard to do

- Quick sort, in the early 1960’s, was famous for being incorrectly implemented many times.
- Correctness of the algorithm can be proved using invariants.
- Quick sort is very fast in practice.
- Faster than mergesort because Quick sort can be done “in place”.

Quick sort implementation

Partitioning

```c
int Partition(int A[], int left, int right) {
    int pivot = A[left];
    int i = left;
    int j = right+1;
    do {
        do ++i; while (A[i] < pivot);
        do --j; while (A[j] > pivot);
        if (i < j) Swap(A[i], A[j]);
    } while (i < j);
    Swap(A[i], A[left]);
    return j;  // j is the position of the pivot after rearrangement
}
```

Worst-case behavior

| 105 | 47 | 13 | 17 | 30 | 222 | 5 | 19 |

If always pick the smallest (or largest) possible pivot then \(O(n^2)\) steps.

Quick Sort Algorithm

- **Algorithm**
 - **Partitioning Step**
 - Choose a pivot element say \(a[i]\)
 - Determine its final position in the sorted array
 - \(a[i]\) for all \(i < j\)
 - **Recursive Step**
 - \(a[j]\) for all \(i > j\)
 - Perform above step on left array and right array.
- **Code**
  ```c
  int partition(int A[], int left, int right) {
    int pivot = A[left];
    int i = left;
    int j = right+1;
    do {
      do ++i; while (A[i] < pivot);
      do --j; while (A[j] > pivot);
      if (i < j) Swap(A[i], A[j]);
    } while (i < j);
    Swap(A[i], A[left]);
    return j;  // j is the position of the pivot after rearrangement
  }
  ```

Quick sort Implementation

- Quick sort can be very fast in practice, but this depends on careful coding.
- Three major issues:
 1. dividing the array in-place
 2. picking the right pivot
 3. avoiding Quicksort on small arrays
Dividing the Array in Place
- We can do the following
 - Place the pivot in the last position of the array
 - Run two pointers Left and Right until Left > Right
 - Exchange left with pivot when left > right

Picking the pivot
- In real life, inputs to a sorting routine are often not completely random
- So, picking the first or last element to be the pivot is usually a bad choice
- One common strategy is to pick the middle element
 - this is an OK strategy

Picking the pivot
- A more sophisticated approach is to use random sampling
 - think about opinion polls
- For example, the median-of-three strategy:
 - take the median of the first, middle, and last elements to be the pivot
 - We can do this in O(1) time

Avoiding small arrays
- While quicksort is extremely fast for large arrays, experimentation shows that it performs less well on small arrays
- For small enough arrays, a simpler method such as insertion sort works better
- The exact cutoff depends on the language and machine, but usually is somewhere between 10 and 30 elements

Stable Sorting Algorithm
- **Definition:** A sorting algorithm is stable if relative position of duplicates are unchanged by the algorithm.
 - Eg: 10 12 17 18 08 90
 - What happens to 18, when bubble sort or insertion sort is applied?
 - What about Mergesort or Quicksort? Are they stable?
Non-Comparison based Sorting

- If we can do more than just compare pairs of elements, we can sometimes sort more quickly
- What if we can look at the bits of information?
- Two simple examples are bucket sort and radix sort

Radix Sort

- There are several world-wide sorting competitions
 - Unix CoSort has achieved 6GB in under one minute, on a single Alpha
 - Berkeley's NOW-sort sorted 8.4GB of disk data in under one minute, using a network of 95 workstations
 - Sandia Labs was able to sort 1TB of data in under 50 minutes, using a 144-node multiprocessor machine
Questions?

- Why is bubble sort sloooooow?
- Why is insertion sort seems better than bubble or selection?
- Why is quick sort fast?

Why is quicksort fast?

- Fastest general purpose algorithm
- Only bad case for quicksort is _____________
- Better use of virtual memory and cache

Things to do

- Quiz 5 is given Friday in class
 - Covers hashing, heaps and sorting
 - Take the practice quiz
- Start Lab 5 if you already have not
 - Part 1 on implementation of PQ is Due Saturday
 - Part 2 on Web Server simulation on Sunday