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Understanding the generation and growth of nonlinear harmonic (and intermodulation) distortion
in microwave amplifiers such as traveling wave tubes (TWTs), free electron lasers (FELs) and
klystrons is of current research interest. It has been widely accepted that similar to FELs, the
nonlinear harmonic growth rate scales with the harmonic number in TWTs. Using a custom-
modified TWT that has sensors along the helix, we provide the first experimental confirmation of the
scaling of nonlinear harmonic growth rate and wavenumber in TWTs. In klystrons, the wavenumber
scaling applies to the nonlinear harmonic bunching and associated nonlinear space charge waves.
The relative scalings of growth rate and wavelength of a nonlinearly generated harmonic mode versus
an injected linear harmonic mode imply that suppression by harmonic injection occurs at a single
axial position that can be located as desired by changing the injected amplitude and phase.

PACS numbers: 52.59.Rz, 84.40.Fe, 84.47.+w, 52.35.Mw

Harmonic (and intermodulation) generation is of sig-
nificant current interest in traveling wave tubes (TWTs),
free electron lasers (FELs), and klystron amplifiers
(KLAs) [1–10]. Although these device types differ in their
electromagnetic wave guiding properties, they all share
common nonlinearities inherent in the physics of ballistic
and space charge bunching. In the case of TWTs, for
example, a 1-d description would include an equation of
motion or force equation, the continuity equation, Gauss’
Law, and a wave equation,
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where v is the electron beam velocity, −e, m are the
electron’s charge and mass, ρ is the electron charge den-
sity, ε0 is the permittivity of free space, and Vsc, Vw are
the wave and space charge potentials respectively. The
electron beam cross sectional area is represented by A, c
represents the phase velocity of a cold circuit wave, and
Z0 represents the interaction impedance.

The near-equivalence of high gain FEL and TWT
physics is evidenced by the fact that the 1-d solution for
linear growth rates in high gain FELs can be cast in an
identical form as Pierce adopted for TWTs using a fluid
(Eulerian) treatment for the electron beam. This was
first done in [11], as later confirmed in [12]. Reference [13]
also derives the Pierce TWT linear dispersion relation for

the FEL linear growth rate using a fluid-beam model, al-
though the relationship to TWT physics is not explicitly
mentioned. While KLA physics does not include an elec-
tromagnetic wave, it shares the same quadratic nonlinear
ballistic bunching mechanics described by terms such as
v(∂v/∂z) in the force equation and by the ρv product
in the continuity equation. Such quadratic nonlinearities
are responsible for the development of harmonic content
in the beam bunching in TWTs [1, 2] as well as FELs
and KLAs.

It is, therefore, not surprising that certain observations
indicating common dynamics have been made about
TWTs, FELs, and KLAs. For example, it has been con-
ventional wisdom that nonlinear harmonic growth rates
in TWTs scale approximately with the order of the har-
monic. Recently, this was proven analytically for the first
time in Ref. [1], wherein it was also shown that there can
be exceptions to that conventional wisdom. Also shown
in Refs. [1, 2] is the fact that intermodulation distortions
arising in TWTs driven by two or more fundamental fre-
quencies evolve from the same quadratic nonlinearities,
and therefore, exhibit nonlinear growth rates that scale
with the order of the intermodulation product. A similar
scaling for harmonic distortion growth rates has recently
been described in FEL simulations [3] and analytically
derived in Ref. [4]. Experimental measurements of har-
monic radiated power versus axial position in FELs have
been reported in Refs. [5, 6], but no prior measurements
of nonlinear distortion product growth rates have been
reported in TWTs.

Harmonic (and intermodulation) distortions are typi-
cally unwanted in TWTs or KLAs. One means of sup-
pressing second harmonic distortions in TWTs has been
to inject a second wave into the TWT input at the har-
monic frequency 2f , in addition to the power injected
at the fundamental frequency f . By varying the ampli-
tude and phase of the signal injected at 2f , “destructive
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cancellation” of the 2f wave at the output of the TWT
can be achieved. It has been demonstrated that a sim-
ilar technique can be used to suppress intermodulation
distortions at the output ports of both TWTs [8, 14] and
KLAs [9].

Intuitive insights for the physics of harmonic suppres-
sion by harmonic injection were given by Mendel [15]
and Garrigus and Glick [16] who speculated what the
harmonic signal components might look like internal to
the TWT. Figure 1, which is similar to Fig. 4 of Ref. [16],
illustrates this view.
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FIG. 1: Earlier hypothesis of mechanism of cancellation by
harmonic injection. Similar to Fig. 4 of Ref. [16]. In this
view, the injected harmonic cancels the nonlinearly generated
harmonic at all positions along the TWT.

Conventional large signal TWT codes (“disk models”)
have predicted the phenomenon of canceling the second
harmonic with harmonic injection [10, 17]; however, the
wave at the harmonic frequency in these models cannot
be resolved into separate components. Recent theory and
numerical simulations [1, 2, 10] have indicated, however,
that the harmonic (and intermodulation) distortion sup-
pression by harmonic injection in TWTs results from the
fact that the total propagating disturbance of the har-
monic (or intermodulation product) is, to a good ap-
proximation, a linear superposition of two modes: (1)
the nonlinear growing harmonic (intermodulation) mode
and (2) a linear growing mode associated with the signal
injected at the harmonic (intermodulation) frequency at
the TWT’s input. This is represented by the analytic so-
lution for the total disturbance at the second harmonic
as given by the S-MUSE 1-d nonlinear spectral TWT
model [1, 2, 18], considering only the dominant modes,
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where u0 is the dc beam velocity, the superscript ‘dr’
refers to the “driven” or “linear” mode, and the su-
perscript ‘nl’ refers to the mode at the harmonic fre-
quency 2f generated by “nonlinear interactions.” This

verifies the earlier intuitive notions that the harmonic
suppression is a result of destructive interference of the
injected harmonic with the nonlinearly generated har-
monic. However, the earlier notions envisioned that can-
cellation occurs at all points along the tube, as is clear
from Fig. 1. As indicated in Eq. (2), the linear and
nonlinear modes have different growth rates (µdr, µnl)
and different wavenumbers (βdr = κdr + 2πf/u0, β

nl =
κnl + 2πf/u0). Consequently, cancellation can occur at
only one position, which is determined by the input am-
plitude and phase of the injected signals. This is illus-
trated in Fig. 2 which is a plot of the S-MUSE analytical
solution at the harmonic frequency, Eq. (2).
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FIG. 2: Illustration of second harmonic suppression by sec-
ond harmonic injection in a TWT using Eq. (2). Destructive
interference of the driven and nonlinear harmonic wave modes
results in cancellation of the total solution at a single axial
location. The two modes and their sum is shown in (a) on
a linear scale, while (b) shows component and sum envelope
magnitudes on a log scale. A plot of circuit voltage phase
(not shown here) would show an abrupt change of 180◦ at the
cancellation point [10].

Figure 2(a) clearly reveals how the suppression results
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from a destructive cancellation effect of two modal com-
ponents with different growth rates and wavenumbers.
Figure 2(b) shows the evolution of the envelopes of the
second harmonic modes and their sum versus z. It can be
seen that the driven mode dominates the solution prior to
cancellation, while the nonlinearly generated mode dom-
inates after the cancellation position.

Therefore, it should not be surprising that theory pre-
dicts these two modes should destructively interfere at
exactly and only one point along the interaction. In
fact, this single-point cancellation feature should occur
in similar experiments in FELs. Even in KLAs, where
the dynamics only involve ballistic beam bunching, an
injected beam modulation (which may be represented by
two constant amplitude space charge waves) can be made
to cancel the nonlinear beam modes (“nonlinear space
charge waves”) at a single point [9]. What separates the
physics of harmonic distortions in TWTs from that of
FELs or KLAs, however, is that in the latter devices,
both nonlinear and linear mode wavenumbers scale with
the frequency of the excitation (e.g., the wavenumber
of a second harmonic excitation is approximately twice
the wavenumber of the fundamental, β2f = 2βf , regard-
less of whether the excitation is a linear or nonlinear
mode). In contrast, recent TWT theory predicts that the
wavenumber of a nonlinear excitation will differ signifi-
cantly from the linear excitation [1, 2]. Specifically, the
nonlinear mode’s wavenumber can be expected to scale
approximately with the frequency of the excitation, as
with KLAs or FELs, but the linear mode’s wavenumber
is predicted to differ significantly from such scaling due
to the effect of the slow-wave on the beam and the effect
of the waveguide’s dispersion on the slow-wave.

Using a custom-manufactured TWT, we have been
able to experimentally confirm that harmonic suppres-
sion by harmonic injection occurs at only one position
along the TWT interaction, and that this cancellation
point moves as the input signal parameters are appropri-
ately varied. Comparison of the measurements with nu-
merical simulation (see Fig. 3) shows excellent agreement
with the theoretically predicted location of suppression.
These experiments, therefore, represent the first experi-
mental confirmation of the predicted scalings for nonlin-
ear excitation growth rates and wavenumbers compared
with linear excitations.

The experimental device used is a custom-modified
research TWT, the XWING (eXperimental WIsconsin
Nothrop Grumman) TWT [8], that has multiple sensors
along the helix to measure the power in the RF wave
as it propagates along the TWT. The sensors are cou-
pled capacitively to the helix at approximately −40 dB
to avoid significant perturbation of the circuit fields. A
drive frequency of 2 GHz was used with 15 dBm input
power which corresponds to operation of the XWING
close to 1 dB gain compression. Figure 3(a) shows mea-
surements of the evolution of the nonlinearly generated

second harmonic without harmonic injection. Next, an
injected harmonic at 4GHz was optimized first for har-
monic suppression at the output (z ≈ 14 cm) as shown
in Fig. 3(b), and second at one of the sensors (sensor 4,
z ≈ 12.5 cm) as shown in Fig. 3(c). We found that max-
imum suppression can be achieved at only a single axial
location, and that re-optimizing the injected amplitude
and phase moves the maximum suppression point to a
different axial location.

In Fig. 3, experimental data are compared to predic-
tions from the LATTE “large signal code” [18, 19]. It has
been shown in Refs. [1, 2] that the LATTE code and the
S-MUSE theory of Eq. (2) are in very good agreement in
describing the scalings of the growth rates and wavenum-
bers of harmonic and intermodulation distortions.

The experiments demonstrate that maximum suppres-
sion occurs at only one axial location and that this lo-
cation can be shifted by changing the input power and
phase of the injected harmonic wave. Thus the ex-
periments confirm the theoretical principle of Eq. (2),
that the resultant harmonic wave consists of two modes
with different growth rates and wavelengths. In fact,
the agreement of experimental and simulation results on
the location of suppression is only possible if the theory
and experiment are in precise agreement on the relative
scalings of the linear versus nonlinear growth rates and
wavenumbers. The discrepancies between the experimen-
tally measured harmonic powers and the simulated values
have been identified as most likely due to 3-d beam effects
(e.g. scalloping) [20]. This would not significantly alter
the growth rate or wavenumber scalings, but it would
readily explain discrepancies between the absolute power
levels on the sensors and computer code predictions.

While Eq. (2) derived from the S-MUSE model is only
valid prior to saturation, experimental results and large-
signal simulations using the Lagrangian code LATTE
are valid for all drive regimes. However, the physics of
Eq. (2) is still inherent in the LATTE simulations, at
least prior to saturation where S-MUSE and LATTE have
been shown to agree. Interestingly, simulations using
LATTE in Ref. [10] indicate that the same superposition-
of-modes picture applies in saturation as well. The S-
MUSE model’s value, however, has been the enabling of
an analytic solution (e.g., Eqs. (1) and (2)) that clearly
reveals the two interfering (linear, nonlinear) modes and
explains how their different growth rate and wavenumber
scalings conspire to produce the phenomena of harmonic
suppression by harmonic injection.

To conclude, this paper presents the first experimen-
tal evidence of growth rate and wavenumber scaling for
a nonlinearly generated harmonic versus a linear excita-
tion in a TWT. This observation is analogous to similar
scalings of nonlinear products in FELs and KLAs, with
certain differences unique to the TWT.
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FIG. 3: Experimental and numerical evolution of second har-
monic (a) without injection, (b) with harmonic injection ob-
taining 29 dB suppression at output, and (c) with harmonic
injection obtaining 31 dB suppression at sensor 4. (Note that
the attenuation experienced by the wave over z ≈ 4−6 cm is
attributed to a circuit sever and is not a result of suppression
due to the injected wave.)
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