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Abstract— Column subset selection (CSS) is the problem of
selecting a small portion of columns from a large data matrix as
one form of interpretable data summarization. Leverage score
sampling, which enjoys both sound theoretical guarantee and
superior empirical performance, is widely recognized as the
state-of-the-art algorithm for column subset selection. In this
paper, we revisit iterative norm sampling, another sampling
based CSS algorithm proposed even before leverage score
sampling, and demonstrate its competitive performance under a
wide range of experimental settings. We also compare iterative
norm sampling with several of its other competitors and show
its superior performance in terms of both approximation ac-
curacy and computational efficiency. We conclude that further
theoretical investigation and practical consideration should be
devoted to iterative norm sampling in column subset selection.

Index Terms— Column subset selection, leverage score sam-
pling, iterative norm sampling, rank-revealing QR factorization.

I. INTRODUCTION

Column subset selection (CSS) is the problem of selecting
a small portion of columns from a data matrix so that
the selected columns serve as a good “snapshot” of the
original data matrix. 1 In a broader view, column subset
selection can be viewed as a special type of low-rank matrix
approximation where a high degree of interpretability is
retained by restraining the low-dimensional subspace to be
spanned by actual columns in the original data matrix. The
column subset selection problem has found applications in
a number of statistical and machine learning tasks, such
as population genetics summarization, electronic circuits
testing, recommendation systems, etc [1], [2].

Column subset selection is traditionally solved by rank-
revealing QR factorization (RRQR, [3], [4]). Recently there
is increasing interest in applying sampling based techniques
on this problem [5], [6], [7], [8], [9]. Among these methods,
the leverage score sampling algorithm proposed in [6] is
perhaps the most popular one due to its simplicity, good
theoretical properties and increased scalability compared to
deterministic factorization based methods such as RRQR,
making the leverage score sampling particularly suitable for
modern data analysis applications where huge data matrices
are prevalent. Empirical evidence also suggests that the
accuracy of leverage score sampling is comparable with
state-of-the-art deterministic methods.

1Formal mathematical formulation of CSS is given in Section III-A.

Apart from leverage score sampling, iterative norm sam-
pling proposed in [9] is another sampling scheme designed
to tackle the column subset selection problem. The prime
motivation of the original paper is to derive an approximation
algorithm of the theoretically optimal yet computationally
inefficient volume sampling algorithm [8]. Compared to
leverage score sampling, the iterative sampling algorithm
has worse error bounds; in fact, the derived error bound
gets exponentially worse when the intrinsic dimension of
the data matrix increases 2. Though [8] also presents another
algorithm that has better theoretical guarantees, the algorithm
selects too many columns per iteration and hence is highly
impractical. Due to these reasons, iterative norm sampling is
largely ignored in practical situations.

In this paper, we revisit iterative norm sampling and
empirically compare it with leverage score sampling as
well as other column subset selection algorithms under a
wide range of experimental settings. Quite surprisingly, we
demonstrate highly competitive results for iterative norm
sampling in terms of both reconstruction (approximation)
accuracy and computational efficiency. As a conclusion, we
call for more theoretical and practical effort into the iterative
norm sampling algorithm.

II. RELATED WORK

Rank-revealing QR (RRQR) factorization is a matrix de-
composition algorithm based on QR factorization. It is the
cornerstone algorithm for column subset selection and is
nearly optimal when evaluated in terms of either spectral or
Frobenious norm approximation error [4], [1]. [4] provides a
nice review and an efficient algorithm for RRQR factoriza-
tion. However, RRQR typically requires cubic running time,
which is too slow for even medium-size data matrices.

Norm sampling proposed in [7] is perhaps the first prov-
ably correct sampling based algorithm for matrix column
subset selection. The algorithm is embarrassingly simple and
also extremely fast (O(n1n2) time complexity, where n1
and n2 are the number of rows and columns of the input
matrx),. Unfortunately, the algorithm only enjoys an additive
error bound and has poor performance over large low-rank
matrices. 3

2See Theorem 3 in Section III-D for details.
3Section III-A explains the difference between additive and multiplicative

(relative) error bounds.



Leverage score sampling was proposed in [6] and is
probably the most popular sampling based method for col-
umn subset selection. Employing the concept of incoherence
from the low-rank matrix completion literature [10], [11],
the leverage score sampling algorithm bases its sampling
distribution on squared `2 row norm of the top-k truncated
right singular vector. Leverage score sampling enjoys good
theoretical properties and superb performance in practice.
Recent research also shows that for certain matrices sampling
according to square roots of leverage scores could help ob-
tain tighter error bounds than plain leverage score sampling
[12].

Iterative norm sampling was proposed in [9] as an approx-
imation algorithm of the near-optimal but computationally
inefficient volume sampling algorithm [8]. It also enjoys
multiplicative and relative error bounds as leverage score
sampling, yet with worse multiplicative factors. No empirical
results are currently known for the iterative norm sampling
algorithm, except in [13], [14] where a variant of the iterative
sampling algorithm is used for column subset selection with
partial observation.

Apart from RRQR and sampling based methods, other
optimization formulation such as group Lasso and block
orthogonal matching pursuit (OMP) have also been success-
fully applied to column subset selection [15], [2]. However,
no theoretical results are known for these two algorithms.

III. SAMPLING BASED CSS ALGORITHMS

In this section we first formally define notations and the
column subset selection (CSS) problem. We then review
three existing and widely applied sampling based column
subset selection algorithms. We provide pseudocode for each
algorithm and summarize theoretical error bounds as well as
practical running time.

A. Notations and problem definition

For any matrix M we use M(i) to denote the i-th column
of M. Similarly, M(i) denotes the i-th row of M. For a
vector x, ‖x‖2 =

√∑
i x

2
i denotes its `2 norm. For a matrix

M, ‖M‖2 = σmax(M) denotes its spectral norm (i.e., the
largest singular value) and ‖M‖F =

√∑
i,j M2

ij denotes
the Frobenious norm of M.

In the column subset selection (CSS) problem, the input
is an n1 × n2 matrix M ∈ Rn1×n2 . To simplify notations,
we also write n = max(n1, n2). An algorithm is expected to
output C = (C(1), · · · ,C(s)) ∈ Rn1×s consisting of s < n2
actual columns of M, so that the approximation error

‖M−CC†M‖ξ

is minimized, where ξ = 2, F can be either the matrix spec-
tral norm or Frobenious norm and C† denotes the Moore-
Penrose pseudoinverse of M. Note that here CC†M =
PC(M) is the projection of each column of M onto the
linear subspace spanned by the selected columns in C.

Usually, the approximation error ‖M−CC†M‖ξ is com-
pared against Mk, the approximation error of the best rank-k

Algorithm 1 Norm sampling for column subset selection
1: Input: data matrix M, size of column subset s.
2: Norm computation: ĉi = ‖M(i)‖22; f̂ =

∑
i ĉi.

3: Sampling: Pr[C(j) = M(i)] = ĉi/f̂ ; i ∈ [n2], j ∈ [s].
4: Output: selected columns C.

Algorithm 2 Leverage score sampling
1: Input: M, size of column subset s, target rank k.
2: Truncated SVD: M = UkΣkV

>
k + R.

3: Leverage score computation: `i = n2

k ‖V
>
k ei‖22.

4: Sampling: Pr[C(j) = M(i)] = `i/n2.
5: Output: selected columns C.

approximation of M. Two types of error bounds are typical:

‖M−CC†M‖ξ ≤ ‖M−Mk‖ξ + ε‖M‖ξ; (1)
‖M−CC†M‖ξ ≤ c‖M−Mk‖ξ. (2)

Error bounds in Eq. (2) with 0 < ε < 1 are usually referred
to as additive because there is an additive term involved
in the bound that does not decrease with the best low-rank
approximation error ‖M−Mk‖ξ. On the other hand, Eq. (2)
shows an example of a multiplicative error bound since the
error is multiplicative in terms of ‖M−Mk‖ξ. In addition,
when the multiplicative factor c is of the form c = 1 + ε we
call Eq. (2) a relative error bound. In general, multiplicative
and relative error bounds are much preferred to additive ones
since in most applications data matrices are approximately
low-rank, which means ‖M −Mk‖ξ could be far smaller
than ‖M‖ξ.

B. Norm sampling

The norm sampling algorithm was first proposed in [7]
as a provably correct algorithm for matrix column subset
selection. The idea is extremely simple: each column M(i)

is sampled with probability proportional to its `2 norm,
i.e., ‖M(i)‖22. Pseudocode for norm sampling is given in
Algorithm 1.

Theorem 1 provides an additive error bound on the results
obtained by Algorithm 1. Time complexity of Algorithm 1
is O(n1n2).

Theorem 1 ([7], Theorem 2): Fix input matrix M ∈
Rn1×n2 and k < s < n2. Let C ∈ Rn1×s be the output of
Algorithm 1. Then with probability at least 0.9 the following
holds:

‖M−CC†M‖2F ≤ ‖M−Mk‖2F +
10k

cs
‖M‖2F , (3)

where Mk is the best rank-k approximation of M and c is
a universal constant.

C. Leverage score sampling

Leverage score sampling for matrix column subset selec-
tion and CUR/CX approximation was first proposed in [6]
and was shown to achieve multiplicative or even relative
error bounds, which improves previous additive results like



Algorithm 3 Iterative norm sampling
1: Input: data matrix M, size of column subset s.
2: Initialize: C = 0, X = M.
3: for i = 1 to s do
4: Norm computation: ĉj = ‖X(j)‖22; f̂ =

∑
j ĉj .

5: Sampling: Pr[C(i) = M(j)] = ĉj/f̂ .
6: Back projection: X← X−CC†X.
7: end for
8: Output: selected columns C.

[7] and [5]. In particular, the row space leverage scores of a
matrix M is defined as

`i :=
n2
k
‖V>k ei‖22, i = 1, · · · , n2; (4)

for some target rank k, where M = UkΣkV
>
k + R is the

top-k truncated singular value decomposition of M and ei ∈
Rn2 is the unit vector with only the ith index non-zero. The
leverage score sampling algorithm samples columns of M
with probability proportional to the leverage score of each
column, as shown in Algorithm 2.

Theorem 2 shows that leverage score sampling achieves
relative error bounds if slight over-sampling (i.e., s > k) is
allowed. The computational copmlexity of the leverage score
sampling algorithm is O(n1n2k), with truncated SVD step
being the computational bottleneck.

Theorem 2 ([6], Theorem 3): Let M ∈ Rn1×n2 be the
input matrix and ε ∈ (0, 1) be an accuracy parameter.
Suppose s ≥ 3200k2/ε2 and let C be the selected columns
output by Algorithm 2. Then with probability at least 0.7 the
following holds:

‖M−CC†M‖F ≤ (1 + ε)‖M−Mk‖F , (5)

where Mk is the best rank-k approximation of M.
In this work we also consider an alternative of sampling

according to square roots of leverage scores; that is, pj ∝√
`j . Though such schemes do not have an error bound

under standard column subset selection setting yet, similar
approaches have been adopted recently in several statistical
machine learning settings, including low-rank approximation
[12] and graph signal recovery [11].

D. Iterative norm sampling (approximate volume sampling)

In [9] an iterative norm sampling algorithm (or equiva-
lently an approximation of volume sampling [8]) was pro-
posed as another column subset selection algorithm that
enjoys multiplicative error bounds. Unlike norm sampling
(Algorithm 1) that selects all columns at a time from a
norm-dependent distribution, iterative norm sampling selects
fewer columns at each iteration and subtracts the projection
of the input matrix onto column space spanned by selected
columns between iterations. The number of columns selected
per iteration is tunable and slightly over-sampling is shown to
yield better approximation bounds [9]. Nevertheless, empiri-
cal evidence suggests that choosing one column per iteration
is already sufficient for providing high-quality results and we

will focus mainly on this variant of iterative norm sampling
in this paper. Pseudocode for iterative norm sampling are
listed in Algorithm 3 and error bounds are presented in
Theorem 3.

Theorem 3 ([9], Proposition 2): Let M ∈ Rn1×n2 be the
input matrix and s = k in Algorithm 3. We then have

EC

[
‖M−CC†M‖2F

]
≤ (k + 1)!‖M−Mk‖2F , (6)

where Mk is the best rank-k approximation of M.
The (k+1)! factor may look appalling in Eq. (6). However,

this is mainly due to the fact that we are selecting exactly k
columns from M, with k the target rank. If oversampling is
allowed (e.g., s = Ω(k2 log k + k/ε)), it can be shown that
a slight variant of Algorithm 3 that allows sampling more
than one columns per iteration achieves similar relative-error
bounds (‖M − CC†M‖2F ≤ (1 + ε)‖M −Mk‖2F ) as in
Theorem 2 [9].

On the computational side, a brute-force implementation
of Algorithm 3 requires O(n1n2k

2) operations due to the
back projection step. However, note that at each iteration
we are only removing a 1-dimensional component from X.
Consequently, the algorithm can be trivially accelerated to
run in O(n1n2k) operations, the same time complexity as
leverage score sampling.

Finally, we remark that iterative norm sampling is similar
in principle to a block OMP algorithm proposed in [2].
Both involve iterative column selection and back projection
between iterations. The major difference between the two
algorithms is that iterative norm sampling is based on residue
norm of column vectors while the block OMP algorithm
considers the product of the original column vector with the
residue vector.

IV. EXPERIMENTS

In this section we compare the empirical performance
of norm sampling, leverage score sampling and iterative
norm sampling on both synthetic and real-world datasets.
Computational efficiency is also compared on data at dif-
ferent scales. For reference purposes, we also include the
group Lasso formulation [15] and classical rank-revealing
QR (RRQR) factorization [4] for comparison. All algorithms
are implemented in Matlab except in Section IV-B where
methods are re-implemented in C++ for fair efficiency com-
parison. For RRQR we use the implementation in [16], which
is a C++ implementation with a Matlab wrapper.

A. Synthetic data

We first test column subset selection algorithms on syn-
thetic datasets. We generate matrices of dimension 50× 50,
with the intrinsic rank r ranging from 10 (low-rank matrices)
to 50 (high-rank matrices). To generate a rank-k matrix we
first sample an n× k random Gaussian matrix (n = 50) A;
set M = AA> and then normalize each entry of M so that
‖M‖F = 1. For low-rank matrices we also impose small
random Gaussian noise on each entry of the matrix to better
distinguish reconstruction error among different algorithms.
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Fig. 1. Empirical comparison of reconstruction error ‖M−CC†M‖ξ (ξ = 2 or F ) of sampling based algorithms summarized in Section III. The blue
dotted line displays leverage score sampling with probability proportional to square roots of leverage scores. Top: spectral reconstruction error; bottom:
Frobenious reconstruction error. From left to right: low-rank matrices sampled uniformly at random; low-rank matrices with coherent columns; full-rank
matrices with coherent columns. For sampling based methods we run the algorithms for 10 times and report the median of the reconstruction error. Because
norm and leverage score sampling is quite variable, we report the median instead of the mean to make result more stable.
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Fig. 2. Running time (seconds) of norm sampling, leverage score sampling,
iterative norm sampling and RRQR factorization with respect to different
matrix sizes. Solid line: k = 25; dotted line: k = 50; dashed line: k = 100.

Due to the nature of column subset selection, uniformly
random matrices alone are not sufficient for evaluation since
no column in a matrix sampled uniformly at random is
significantly more representative than the other columns.
Therefore, we also synthesize data matrices that are highly
coherent. To do this, we simply pick a random column in M,
enlarge its `2 norm by 10 times and repeat the same column
for 5 or 10 times. In this way the data matrix consists of 10
identical important columns. A satisfactory column subset
selection algorithm is expected to choose one and only one
from the repeated columns.

In Figure 1 we show comparison of reconstruction error
‖M − CC†M‖ξ, ξ = 2, F on both low-rank and full-rank
synthetic matrices. Note that for low-rank matrices the num-
ber of columns selected (s) is set to be equal to the intrinsic
rank (k) of M. The first observation is that both relative-
error algorithms (leverage score sampling and iterative norm
sampling) outperforms additive-error algorithms (norm sam-
pling) by a large margin, especially when input data matrix
has highly coherent columns. In addition, our result also
shows that iterative norm sampling consistently outperforms
leverage score sampling under almost all scenarios. This is
quite surprising as leverage score sampling is usually con-
sidered to be the state-of-the-art method for column subset
selection (at least when Frobenious norm reconstruction error
is considered) and also dominates iterative norm sampling in
terms of theoretical error bounds.

We further comment on the two non-sampling based meth-
ods. The rank-revealing QR (RRQR) factorization method
is clearly the best algorithm for column subset selection
regardless of data matrix properties (intrinsic rank or column
coherence) and/or evaluation metric (spectral or Frobenious
norm). This also consolidates the near-optimal theoretical
properties of RRQR factorization [1]. However, RRQR re-
quires cubic running time, which is computationally heavier
than all the three sampling based algorithms. We demonstrate
this difference empirically in Section IV-B. Finally, group
Lasso formulation behaves much like an additive-error algo-
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Fig. 3. Comparison of mean reconstruction error ‖M−CC†M‖ξ , ξ = 2 or F on the Hapmap phase 2 dataset. RRQR and group Lasso are not included
due to efficiency reasons. Top: spectral norm reconstruction error; bottom: Frobenious norm reconstruction error. ε denotes the best low-rank approximation
error for each sliding window. See [17] or Section 6.2 in [13] for details.

rithm 4 while being equally or even more computationally
expensive than the other methods.

B. Running time

In this section we compare the running time of norm
sampling, leverage score sampling, iterative nom sampling
and the optimal RRQR factorization algorithms on data
matrices of different sizes and intrinsic dimensions. For
fair comparison we re-implement the three sampling-based
algorithms in C++ and use [16] as the C++ implementation
(with a Matlab wrapper) for RRQR factorization. Experi-
ments were conducted on a laptop with an Intel Core i5-
4200U@1.60GHz CPU, 12 GB main memory and Windows
8.1 operating system installed. Only one computing thread
is allowed for all algorithms.

Figure 2 shows that RRQR factorization scales poorly with
data matrix dimension n. 5 This is perhaps unsurprising
as RRQR has O(n3) regardless of the intrinsic dimension
k or the number of columns selected. On the other hand,
norm sampling requires the least computational resource
since it only takes O(n2) operations to scan through the
data matrix once and compute per-column `2 norm. The
comparison between leverage score sampling and iterative
norm sampling is interesting: both algorithms share the
same O(n2k) computational complexity, yet leverage score

4The original paper in which it was proposed did not provide an error
bound.

5We use square input matrices in this experiment; that is, n = n1 = n2.

sampling is considerably slower than iterative norm sam-
pling. This is mainly because in leverage score sampling
one needs to compute a truncated SVD of the data matrix.
In contrast, iterative norm sampling only performs Gram-
Schmidt orthogonalization per iteration and computes back
projection onto a single vector, which is nothing more than
a matrix inner product evaluation. Consequently, iterative
norm sampling has less computational overhead and is faster
in practice than leverage score sampling. This observation
reveals another potential advantage of the iterative norm
sampling algorithm.

C. Human genetic dataset

The Hapmap Phase II database [18] is a major database
that contains genetic data of sampled individuals across the
globe. Previously people have used low-rank methods such
as principle component analysis (PCA) and column subset
selection to analyze the genetic dataset [17], [19]. In this
section we test the reconstruction accuracy of norm sampling,
volume sampling and iterative norm sampling on this real-
world dataset. RRQR factorization and group Lasso are
excluded from the comparison for computational efficiency
reasons. We use the gene data of the first chromosome in
the joint east Asian population database (CHB and JPT)
for demonstration. The dataset can be represented as a data
matrix with 89 rows (individuals) and 311,854 columns
(gene snippets). Standard pre-processing is applied to further
transform the data matrix into a series of a few hundred
smaller matrices. Readers can refer to [17] or Section 6.2 in



[13] for details about the pre-processing steps.
Figure 3 shows the average reconstruction error ‖M −

CC†M‖ξ, ξ = 2, F of the three sampling based column
subset selection algorithms. It is clear that iterative norm
sampling outperforms both the other algorithms by a large
margin under all experimental settings. On the other hand,
leverage score sampling only shows notable improvement
over the baseline norm sampling algorithm when the number
of selected columns is large and the Frobenious reconstruc-
tion error is evaluated.

V. CONCLUDING REMARKS

Experimental results in Section IV shows that iterative
norm sampling outperforms leverage score sampling in terms
of approximation accuracy under almost all testing scenarios.
This does not agree with theoretical results for both algo-
rithms, as presented in Section III. This raises an interesting
question of whether error bounds for iterative norm sampling
can be further improved. In particular, we feel the error
bound in Eq. (6) is extremely loose because the exponential
(k+1)! factor does not show up at all in practice even when
k is as large as 50. We think it is a promising future direction
to explain theoretically the superior empirical performance
of iterative norm sampling.

On the theoretical side, though iterative norm sampling
has comparable or worse theoretical error bounds compared
to leverage score sampling, under certain settings iterative
norm sampling could have better theoretical guarantee. One
example is [13] where the authors consider a missing data
setting; that is, only a small portion of the input matrix is
observed. Under such settings, the authors showed that if
O(k2) columns and feedback-driven sampling schemes are
allowed, iterative norm sampling could achieve (1 + ε)-type
relative error; while on the other hand approximate leverage
score sampling is only able to achieve a constant-factor
multiplicative error bound.

Computational efficiency is another interesting issue aris-
ing from our experimental results. In Section IV-B we show
that iterative norm sampling is actually faster than exact
leverage score sampling. In [20] a fast algorithm was pro-
posed to approximately compute leverage scores of a large
matrix. The algorithm has O(n1n2 log n) time complexity
when n1 � n2. However, on near square matrices the time
complexity of the proposed algorithm reduces to O(n2k). It
is an interesting question to further speed-up iterative norm
sampling so that it can handle large-scale data matrices.
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