
10-704 Homework 3
Due: Thursday 4/14/2015

Instructions: Turn in your homework in class on Thursday 4/14/2015

1. Wavelets and Complexity Penalized ERM In this problem we will analyze the
rate of convergence of the wavelet estimator for denoising.

The Haar wavelets are piecewise constant functions over [0, 1) defined by:

ψj,k(x) = 2j/2
(
1[x ∈ [2−j(k − 1), 2−j(k − 1/2))− 1[x ∈ [2−j(k − 1/2), 2−jk)

)
For j ∈ N ∪ {0} and 1 ≤ k ≤ 2j. We also have the scaling function ψ0,0(x) = 1[x ∈
[0, 1)].

We saw in class that these functions form an orthonormal basis for [0, 1), we can
therefore write any function supported on [0, 1) as:

f(x) =
∑
j≥0

2j∑
k=1

aj,kψj,k(x) + a0,0φ0,0(x)

For any function f let Πlf denote the projection of f onto the top l scales of the
wavelet basis. That is:

(Πlf)(x) =
l∑

j=0

2j∑
k=1

〈ψj,k, f〉ψj,k(x) + 〈ψ0,0, f〉ψ0,0(x)

Typically we have to quantize the wavelet coefficients to some precision, so now let Πl,ε

denote the projection onto the top l scales but where all coefficients are quantized.

Πl,εf = min
aj,k=βj,kε, βj,k∈Z

‖f −
l∑

j=0

2j∑
k=1

aj,kψj,k − a0,0ψ0,0‖2

where Z denotes the set of integers. In words, Πl,εf is the best approximation (in the
L2 sense) to f over all Haar wavelet representations with scale at most l and with
coefficients that are multiples of ε.

Let Fs,M be the set of piecewise constant functions supported over [0, 1) with at most
s discontinuities and with `∞ norm bounded by M (i.e. supx |f(x)| ≤ M for all
f ∈ Fs,M). Consider an f ∈ Fs,M .

(a) How many non-zero wavelet coefficients does Πlf have? A good upper bound is
sufficient.
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(b) Give an upper bound on the approximation error ‖f − Πlf‖22.
(c) How many non-zero wavelet coefficients does Πl,εf have? Again, a good upper

bound suffices.

(d) Give an upper bound on the approximation error ‖f − Πl,εf‖22.
(e) For a function f ∈ Fs,M . How many bits c(f) does it take to encode Πl,εf?

(f) Suppose we are given noisy samples Yi = f ∗(Xi) + εi for i = 1, . . . , n where
f ∗ ∈ Fs,M and εi ∼ N (0, σ2) are i.i.d. We estimate the true function f ∗ using
complexity penalized ERM (CRM) over the class of estimators g ∈ G := {Πlf : f
supported on [0, 1)}. The CRM rule for wavelet denoising is

ĝ = arg min
g∈G

{
R̂(g) +

c(g) + ln(1/δ)

n

}
.

(Recall we discussed how this optimization can be implemented using a simple
hard-thresholding procedure).

For the squared loss, R(g) = E[(g(X)−Y )2] andR(g)−R∗ = E[(g(X)−f ∗(X))2] =
‖g − f ∗‖22 assuming Xi are uniformly distributed on [0, 1). Using this, we have
the following bound under squared loss for the CRM rule for wavelet denoising:

‖ĝ − f ∗‖22 ≤ min
g∈G

{
‖g − f ∗‖22 +

c(g) + ln(1/δ)

n

}
+ δ

≤ min
g∈Gε

{
‖g − f ∗‖22 +

c(g) + ln(1/δ)

n

}
+ δ

for all δ > 0 and where Gε = {Πl,εf : f supported on [0, 1)}. Use the previous
results in (d), (e) to show that the rate of error convergence of the CRM rule for
wavelet denoising is O((s log2 n)/n), if we quantize to ε = 1/

√
n and ` = log2 n−1

as discussed in class. This is essentially a parametric rate where s serves as the
number of parameters.

2. Universal Prediction Recall the setting for the exponential weights algorithm. We
had a finite class of predictors F , with predictors f1, . . . , fN and play a T round game,
starting with distribution q1 = (1/N, . . . , 1/N) and η =

√
8 lnN/T . At round t, nature

reveals expert advice xt, we draw it ∼ qt and play ŷt = fit(xt) and suffer loss l(ŷt, yt) for
some true label yt. In the exponential weights algorithm, we updated the distribution
qt as:

qt+1(i) ∝ qt(i)× exp {−ηl(fi(xt), yt)}

We can extend the algorithm to an infinite class of predictors using a prior π on F
instead of the uniform prior. In this problem, you will demonstrate a bound on the
expected regret of the algorithm, i.e. on

1

T
E

T∑
t=1

l(ŷt, yt)− inf
f∈F

1

T

T∑
t=1

l(f(xt), yt),
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for any loss l that is bounded in [0, 1]. The expectation is over the randomness in our
algorithm.

Let W0 =
∑

i πi = 1 and Wt =
∑

i πie
−ηLit where Lit =

∑t
τ=1 l(fi(xτ ), yτ ) is the

cumulative loss of expert fi.

(a) Show that lnWT ≥ −mini[ηL
i
T + log πi].

(b) Also show that Wt/Wt−1 = lnEit∼qt exp(−ηl(fit(xt), yt)).
(c) We will now use an inequality that bounds the moment generating function for a

bounded random variable X ∈ [a, b]:

lnEesX ≤ sEX +
s2(b− a)2
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Note that this is the exact inequality that we use to prove Hoeffding’s inequality.
Since the losses l ∈ [0, 1], argue that this inequality implies

lnWT ≤ −η
T∑
t=1

Eitl(fit(xt), yt) +
η2T
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(d) Combine the previous results (upper and lower bounds on lnWT ) to argue that
for any prior π on F we have for an appropriate setting of the parameter η:

1

T
E

T∑
t=1

l(ŷt, yt) ≤ inf
f∈F

{
1

T

T∑
t=1

l(f(xt), yt) +
1 + log(1/π(f))√

8T

}

The bound shows that the performance of the algorithm is close to the best
penalized performance of any predictor where the penalization reflects our prior
belief in the expert. Remark: A slightly better regret bound with dependence on√

log(1/π(f)) is also possible.

3. Arithmetic Coding

Arithmetic Coding is a method to encode a ( possibly very long) sequence of symbols
from an alphabet. Recall that while the Huffman/Shannon codes have desirable code
lenghts, they may be computationally inefficient for very long sequences. In addition,
arithmetic coding also allows for sequential encoding and decoding.

In this question you will implement Arithmetic Coding. We have provided starter
code in Matlab, but you may use any language of your choice. The starter code is
downloadable from the Homework page. These are the details of the implementation.

• Our alphabet has 4 symbols X = {2, 3, 4, 5}.
• We will use the symbol “1” as a terminating symbol - i.e. the encoder terminates

each sequence with “1” and the decoder, upon seeing a “1” stops decoding.
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• The symbols X ∪ {1} are drawn from a prior distribution p given in the starter
code.

• You should write a function arithmeticEncode that takes in as arguments p and
a sequence of symbols in X ∪ {1}. It should ouptut the binary arithmetic code
for this sequence.

• You should write a function arithmeticDecode that takes in as arguments p and
an encoded binary code and output the corresponding sequence. The decoder
should terminate when it reads the symbol “1”.

Remark 1. Recall that in arithmetic coding, each sequence is represented as an interval
in [0, 1]. While this works in infinite precision, you may run into numerical issues for
large sequences. A finite precision encoder and decoder will appropriately rescale the
intervals.

You need to submit,

(a) The outputs of the results for the sequences given in the starter code. The code
will print them out for you so you can just attach a screenshot.

(b) A printed version of your code attached to your solution.

4. Sufficient Statistics Let Xn = X1, . . . , Xn ∼ Pθ = Unif(0, θ). And recall that
T (Xn) = maxiXi is a sufficient statistic.

(a) What is the distribution of P (X|T (Xn))?

(b) Argue that generating additional samples according to P (X|T (Xn)) does not help
us get more information or improve our estimate of the parameter θ.
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