
10-704 Homework 2
Due: Thursday 2/26/2015

Instructions: Turn in your homework in class on Thursday 2/26/2015

1. Maximum Entropy

(a) Suppose we want to maximize the entropy of a distribution supported on the
non-negative integers (N ∪ {0}) subject to a mean constraint:

p? = max
p
−

∑
i∈N∪{0}

pi log pi s.t.
∑

i∈N∪{0}

pi = 1
∑

i∈N∪{0}

ipi = α

Verify that the solution to this program (the MaxEnt distribution) is a Geometric
distribution (i.e. pk = (1− λ)kλ for some parameter λ > 0).

Solution: We know that the solution will be from the Gibb’s family:

p?(k) = p?k = exp (λ0 + λ1k)

Plugging into the mean constraint gives:

∞∑
k=0

k exp (λ1k) = α exp(−λ0)

The series on the left hand side converges to eλ1

(eλ1−1)2 , provided that λ1 < 0 (To

see this, let S denote the series and consider (1− eλ1)S). Meanwhile the sum to
1 constraint says:

∞∑
k=0

exp (λ1k) =
1

eλ1 − 1
= exp(−λ0)

Combining, we have:

eλ1

eλ1 − 1
= α⇔ eλ1 =

α

α− 1
, eλ0 =

1

α− 1

Plugging back into our expression for p? we have:

p?k =
1

α− 1

(
α

1− α

)k
And the result follows by setting λ = 1

α−1 .
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(b) Consider the following MaxEnt of a joint distribution p(x1, . . . xd) = p(x):

p? = max
p
−
∫
p(x) log p(x)dx s.t.

∫
p(x)dx = 1,∀i ∈ [d]pi(·) =

∫
p(x)dx−i = fi(·)

Specifically, given marginal functions fi : Xi → R (assume
∫
fi(xi)dxi = 1 and

fi(xi) ≥ 0), we want the actual marginals of p to match. The notation dx−i
denotes integration over all but the ith variable, which is an argument to pi(·).
Solution: We write down the marginal constraints more explicitly in terms of
expectations. For each i ∈ [d], and for each value xi ∈ Xi, we have a constraint
of the form:

pi(xi) = Ex∼p1[xi = xi] = fi(xi)

So we will introduce a lagrange function λi : Xi → R to encode this constraints.

As before, we start with the Gibbs family:

p?(x) = exp

(
λ0 +

d∑
i=1

λi(xi)

)
= exp(λ0)

d∏
i=1

exp(λi(xi))

We must make the marginals match, and we know that the ith marginal is:

p?i (·) = exp(λi(·))
∫

exp(λ0)
∏
j 6=i

exp(λj(xj))dx−i

=
exp(λi(·))∫

Xi exp(λi(xi))dxi
= fi(·)

The transition from the first line to the second line uses the fact that
∫
p(x)dx = 1

so that integrating out everything else makes the normalization just over xi. At
this point, we can set λi(·) = log fi(·) and we know that since fi is a valid marginal
function, it integrates to one.

Since this is true for all i, the maximum entropy distribution is just the product
of the marginals.

p?(x) =
d∏
i=1

fi(xi).

2. Relative Entropy

(a) Show that relative entropy D(p‖q) is convex in p.

Solution: Since:

D(p‖q) = −H(p)−
∫
p log q
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and the second term is linear in p, we must simply show that the negative entropy
is convex.

The first and second derivatives are:

∂ −H(p)

∂p(x)
= log p(x) + 1

∂2 −H(p)

∂p(x)2
=

1

p(x)

and the cross terms in the Hessian operator are zero. Since p is a distribution, it
must be the case that p(x) ≥ 0 which means that the Hessian operator is positive
semi-definite. This implies that the negative entropy is convex.

(b) Derive the conjugate function of D w.r.t. p

Solution: By definition, the conjugate function is:

ψ(f) = sup
p
〈f, p〉 −D(p‖q) = sup

p

∫
p(x) (f(x)− log p(x) + log q(x))

This is a concave function in p from part (a) above, so we can maximize by setting
the derivative equal to zero. This gives:

∂(·)
∂p(x)

= f(x)− log p(x)− 1 + log q(x) = 0⇔ p(x) = exp (f(x) + log q(x)− 1)

Technically, you should also add in Lagrange parameter on the constraint that∫
p(x) = 1, but all this does is force you to normalize, so the optimizing p is:

p(x) =
exp (f(x) + log q(x))∫
exp (f(x) + log q(x)) dx

Plugging this in above we get:

ψ(f) =

∫
q(x)f(x) exp(f(x))− q(x) exp(f(x)) log

(
exp f(x)∫

exp(f(x)+log q(x))dx

)
∫

exp (f(x) + log q(x)) dx

= log

(∫
q(x) exp(f(x))dx

)
which is known as the log partition function.

3. Source Coding

(a) A set of symbols have a distribution p. You encode the symbols so that the length
` of a symbol x is `(x) = dlog 1

q(x)
e for some other distribution q. Show that:

H(p) +D(p‖q) ≤ E`(x) < H(p) +D(p‖q) + 1.
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Solution: Both directions are based on the fact that:∑
x

p(x) log
1

q(x)
=
∑
x

p(x) log
p(x)

p(x)q(x)

=
∑
x

p(x) log
1

p(x)
+
∑
x

p(x) log
p(x)

q(x)

= H(p) +D(p‖q)

The lower bound follows since:

Ex∼pl(x) =
∑
x

p(x)dlog
1

q(x)
e ≥

∑
x

p(x) log
1

q(x)

and the upper bound follows since:

Ex∼pl(x) =
∑
x

p(x)dlog
1

q(x)
e <

∑
x

p(x)

(
log

1

q(x)
+ 1

)

(b) Consider the following method for generating a code for a random variable X on
p symbols {1, 2, . . . ,m} with probabilities p1 ≥ p2 ≥ . . . pm. Define

Fi =
i−1∑
k=1

pk

The codeword for i is the number Fi ∈ [0, 1] rounded off to `i bits where `i =
dlog 1

pi
e. (E.g. for the symbols {a, b, c, d} with probabilities {0.5, 0.25, 0.125, 0.125}

the codeword assignment would be {0, 10, 110, 111}.) Show that

i. That this code is a prefix code

ii. The code satisfies H(X) ≤ E`i ≤ H(X) + 1

Solution:

For claim 1, we will show that ci and cj differ somewhere in the first li locations,
which means that pi is not a prefix of pj and vice versa. Since we have arranged
the pi’s in decreasing order, Fj for j > i differs from Fi by at least pi ≥ 2−li . This
means that the binary representation of Fi differs from Fj in at least one place in
the first li bits. As lj > li, ci will not be a prefix for cj.

Claim 2 is trivial since the code words have length li = dlog 1
pi
e. As we saw in

class, and essentially the same argument as part (a) above, this means that:

H(p) =
∑
i

pi log
1

pi
≤
∑
i

pidlog
1

pi
e <

∑
i

pi log
1

pi
+ 1 = H(p) + 1
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