
10-704 Homework 1
Due: Thursday 2/5/2015

Instructions: Turn in your homework in class on Thursday 2/5/2015

1. Information Theory Basics and Inequalities C&T 2.47, 2.29

(a) A deck of n cards in order 1, 2, . . . , n is given to you. You remove one card at
random and then place it again at one of the n available positions at random.
What is the entropy of the resulting deck?

(b) Let X, Y, Z be joint random variables. Prove the following inequalities and iden-
tify conditions for equality.

i. H(X, Y |Z) ≥ H(X|Z)

ii. I(X, Y ;Z) ≥ I(X;Z)

iii. H(X, Y, Z)−H(X, Y ) ≤ H(X,Z)−H(X)

(c) Consider a random variable X supported on {1, . . . ,m} with P(X = i) = pi. We
will assume p1 ≥ p2 ≥ · · · ≥ pm. Let p = [p1, . . . , pm]. Since X = 1 is the

most likely assignment, the minimal probability of error predictor of X is X̂ = 1
with probability of error Pe = 1 − p1. Maximize H(p) subject to the constraint
1−p1 = Pe to find a bound on Pe in terms of the entropy. This is Fano’s inequality
in the absence of conditioning.

2. Submodular Feature Selection Here we study the problem of trying to predict a
random variable Z given a collection of random variables X1, . . . , Xp (called features).
The goal of feature selection is to find a small subset of the features that predict Z
well.

(a) Show that the mutual information function f(S) = I(Z;Xs, s ∈ S) is not submod-
ular. This provides evidence that greedy maximization of the mutual information
functional may not be a good way to do feature selection.

(b) Show that in the naive bayes model, greedy maximization of mutual information
is a theoretically justified approach for feature selection. The naive bayes model
posits that Xi ⊥ Xj|Z for all i 6= j so the distribution factors as P (Z,X1, . . . , Xp) =
P (Z)

∏p
i=1 P (Xi|Z).

3. Unbiased Estimation of Entropy Functionals In class we mentioned that there
are no practical unbiased estimators for entropy functionals. One can however design
an unbiased estimator if you are allowed to choose a set of samples of arbitrary but
finite size. The problem is that there is no a priori bound on the sample size. In
this question we will develop and analyze these estimators for the discrete setting. Let
X1, X2, . . . denote a sequence of samples from a discrete distribution P with symbols
C1, . . . , Ck and probabilities (p1, . . . , pk).
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(a) For 1 ≤ i ≤ k, let Ni denote the smallest j ≥ 1 for which Xj = Ci. Show that:

Ĥ1 =
k∑

i=1

1[Ni ≥ 2]

Ni − 1
(1)

is an unbiased estimator for the entropy H(P ) = −
∑k

i=1 pi log pi. The expansion
log(1− x) = −

∑∞
j=1 x

j/j may be useful.

(b) Design an unbiased estimator for the entropy H(P ) based on pairing each of the
first n samples with the next sample in the sequence with the same symbol. The
identity log(1−x)

1−x = −
∑∞

i=1 hix
i where hi =

∑i
j=1

1
j

is the ith harmonic number
will be useful.

4. Estimation of KL Divergence Describe how to estimate the KL divergence D(p||q)
using the first-order Von-Mises Expansion approach. Say you are given 2n i.i.d. sam-
ples from each distribution ({Xi}2ni=1 ∼ p and {Yi}2ni=1 ∼ q).
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