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Homework 4: Solution
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Note: The TA graciously thank Rafael Stern for providing most of these solutions

4.1 Problem 1

4.1.1 (a)

Recall that a tree is uniquely identified by the set of its leaves. Every node in the tree can be obtained through
a binary search, which we represent by a sequence of 0’s and 1’s. For example, 01 represents starting at the
whole interval, dividing it in two, going to the left split, dividing the left split in two and going to the right
split of the current interval. Hence, the set of all leaves completely determines the tree and every leaf can
be encoded by its corresponding binary search.

Let |τ | denote the number of leaves of the tree. We can encode this number as in HW3.2.b. Similarly, we
can encode every binary search sending every direction twice and appending a 01 in the end. For example,
01 would become 001101. Finally, encode the tree by sending the encoded version of |τ | and then sending
the encoded version of each leaf in any order. This is a prefix code by the same argument as in HW3.2.d.
In the worst case scenario, this encoding scheme uses γ + 2γ(2γ + 2) bits.

Next, for each leaf, we need to encode the probability of a data point being in it. Order the leaves according
to the lexicographic order in their binary search representations. Observe that the empirical probabilities
can assume at most (n + 1) values. Hence, there are at most (n + 1)|τ | combinations of possible empirical
probabilities for the ordered leaves. Hence, we can encode the observed empirical probability with |τ | log(n+
1) bits.

4.1.2 (b)

Let lq(x
n) denote the log-likelihood as an argument of the model q. The description length of model q is

given by:

|τq|+ 2|τq|(2|τq|+ 2) + |τ | log(n+ 1)− lq(xn)

The two stage optimization procedure consists of:

1. For each tree, choose the leaf probabilities which maximize the Shannon information of the data. These
probabilities maximize lq(x

n) and are the maximum likelihood estimates. That is, they correspond to
the empirical probabilities.

2. Choose the tree (with the leaf probabilities selected in step 1) which minimizes the description length.
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4.1.3 (c)

First, observe that the encoding of the tree does not grow with n and, thus, is negligeble for sufficiently large
n. Hence, for large n we are interested in minimizing:

|τ | log(n+ 1)− lq(xn)

An efficient way of searching for this minimizer is starting with a complete tree and prunning the pair of
leaves which provide the least information until prunning such leaves increases the description length.

4.2 Problem 2

4.2.1 (a)

Let X be an encoding. Consider the process of inputting X to channel 1 and define X1 as the output of the
channel. Consider passing X1 as an input to channel 2 and define the final output as X1,2. Also consider
the process of inputting X to the channel with capacity C and define the output as X3. Observe that X3

and X1,2 are identically distributed conditionally on X. Hence, I(X;X3) = I(X;X1,2). Next, by the data
processing inequality, for any distribution on X, I(X;X1,2) ≤ I(X;X1). Hence,

C = max
FX(x)

{I(X;X3)} = max
FX(x)

{I(X;X1,2)} ≤ max
FX(x)

{I(X;X1)} = C1

Also using the data processing inequality, observe that I(X;X1,2) ≤ I(X1;X1,2). Hence,

C = max
FX(x)

{I(X;X3)} = max
FX(x)

{I(X;X1,2)} ≤ max
P1FX(x)

{I(X1;X1,2)} ≤ max
FX1

(x1)
{I(X1;X1,2)} = C2

Conclude that C ≤ min{C1, C2}.

4.2.2 (b)

Let X and Y be, respectivelly, the input and output of this channel. Call P (X = 1) = p. Recall that
I(X;Y ) = H(Y )−H(Y |X). Observe that:

H(Y |X) = (1− p)H(0) + pH(0.5) = p

and

H(Y ) = −P (Y = 0) log(P (Y = 0))− P (Y = 1) log(P (Y = 1)) =

−(1− 0.5p) log(1− 0.5p)− 0.5p log(0.5p)

Hence, I(X;Y ) = −(1− 0.5p) log(1− 0.5p)− 0.5p log(0.5p)− p.
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dI(X;Y )

dp
= 0.5 log(1− 0.5p)− 0.5 log(0.5p)− 1

Setting dI(X;Y )
dp = 0:

1− 0.5p̂

0.5p̂
= 2

1− 0.5p̂ = 2p̂

p̂ =
2

5

Since p ∈ [0, 1] and I(X;Y ) = 0 for p = 0 and p = 1, conclude by Weierstrass’s Theorem that p̂ maximizes
the mutual information.

4.3 Problem 3

4.3.1 (a)

4.3.1.1 (i)

We use the following fact from Statistics: Let X = (X1, ..., Xn) ∼ N(0, σ2Ip), then we have that E‖X‖2 =
σ2n and ‖X‖2 is sharply concentrated around σ2n.

The expectation can be computed in a straightforward manner; the proof of the concentration uses a Gaussian
tail bound and can be found in intermediate level mathematical statistics textbooks (or Google)

We have then that ‖X‖ is about σ
√
n with high probability.

4.3.1.2 (ii)

The volume of a n-sphere of radius R is cRn. Hence, the volume of the sphere the sequence is expected to
lie in is c(

√
nσ2)n. Similarly, the volume of each sphere corresponding to a codeword is c(

√
nD)n. Thus, at

least
(
σ2

D

)n0.5
codewords are required to cover the sphere the sequence lie in.

4.3.1.3 (iii)

Thus, at least n
2 log(σ

2

D ) bits are required to describe the sequence to distortion D and the average usage of

bits per element of the sequence is 1
2 log(σ

2

D ).
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4.3.2 (b)

Suppose we have K Gaussian sources to compress with variances σ2
k for k = 1, ...,K. Then the optimization

problem becomes:

min
D1,...,DK

K∑
k=1

log

(
σ2
k

Dk

)

s.t.

K∑
k=1

Dk ≤ D

Dk ≤ σ2
k

Taking the Lagrangian, we get

L(Dk, λ, µk) =

K∑
k=1

log

(
σ2
k

Dk

)
+ λ(

K∑
k=1

Dk −D) +

K∑
k=1

µk(Dk − σ2
k)

Taking the derivative with respect to Dk, we get that

∂L

∂Dk
= − 1

Dk
+ λ+ µk

By KKT conditions then, we know the following:

• Dk = 1
λ+µk

• if Dk < σ2
k, then µk = 0

• if
∑
kDk < D, then λ = 0

Hence, we can conclude that, for all k such that Dk < σ2
k, Dk is constant.

To interprete this solution as “reverse water-filling”, note that if σ2
k is too small, then we set Dk = σ2

k,
otherwise, we set Dk as all constant.


