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2.1 Problem 1

D(qllp) = /qlog (2) dx

Hence,

vDlally) = 1-+10s ()
Similarly, h;(q) = E[r;(X)] = [ ri(z)gdz. Thus:

Vhi(q) = ri(z)

Finally ho(¢) = | gdz and hence, Vho = 1. Since D(p|q) is convex and the equality restrictions are linear,
we wish to solve a convex optimization problem. The Lagrangian of this problem is:

L(g,\i) = VD(allp) + > X\iVhi(q)
1=0

Solving for L(g*, \;) = 0, obtain:

m

1+1log(g") —log(p) + Ao + »_ Airi(x) =0

i=1

Calling A§ = Ao — 1, obtain:
q* — pek(*,-&-Z?;l AiTi

Taking A\§ such that [ gdz =1, obtain:

peZZL Airi
= 42:1: pezzn:l it

*

q

Assume there exist unique values for each \; such that the equality constraints are satisfied. In this case,
(¢*,\) clearly satisfy stationarity and primal feasibility. Since there are no inequality conditions, dual
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feasibility and complementary slackness are also satisfied. Hence, the KKT conditions are satisfied and ¢*
minimizes D(q||p).

2.2 Problem 2

By results from class, we need only find constants Mg, A1, A2 such that the distribution p(x) = exp(Ao +
A1z + A22?) satisfy the moment constraints.

We inspect the Gaussian pdf with first moment p and second moment o2 — p?

1 (z — p)?
8(z) = — = exp(—5 1)
1 x? x u?
= v gt r T gp)
And we conclude immediately that A\; = % and Ay = fﬁ and )\ is whatever constant required to normalize

the distribution.

2.3 Problem 3

Recall that, by HW1 2(b):

H(Py,...,Py)=> H(P|Piy,....,P)) <> H(P)
i =1

The right side is completely determined by the marginals and corresponds exactly to the joint distribution
of independent variables. Hence, the result is proven.

2.4 Problem 4

24.1 4.1

Let r(X) be the entropy rate of a stocastic process X. Recall that:

M) =t H e X)

n—o0 n
by HW1 2(b):
H(Xy,..., Xp) = H(X1) + Y H(Xi|Xi1,..., X1)

=2

By the Markovian property, X; is conditionally independent of (X;_o,...,X;) given X;_;. Hence:
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S OH(X|Xi oy, X1) =Y H(Xi| X 1)
=2 =2

Since the Markov chain is homogeneous and stationary, for all ¢, H(X;|X;_1) = H(X3|X1). Thus:

n— o0 n

Finally,

. . 1
X2|X1 ZP EJ:P(XQ_j|X1_Z)log(P(X2:jX1:Z)>

Call P; the i — th row of P. Observe that:

zj:P(Xz = j|X1 =1i)log <P(X2 :§|X1 :i)> =H(P;)

Hence, by stationarity:

HXalX) = 3 PO = DH(P) = S n()H(R) = i (H(P))

Observe that r(X) = H(X32|X1) < H(X3). If we take the variables to be i.i.d. H(X2|X;1) = H(X3). Finally,
H(X5) is maximized taking the uniform distribution on the support of the Markov chain. Hence, the r(X)
is maximized taking P as having all rows equal to ﬁ, were S is the support of the Markov chain.

242 4.2

The invariant measure is obtained solving for u(1) = pu(0) and p(0) + p(1) = 1, which lead to p(0) = ﬁ

and p(l) = . From the last item, the entropy rate of the Markov chain is p (H(P;));. Observe that P,
is degenerate and7 therefore, H(P;) = 0. Hence, r(X) = 1+1p(( p)log(1l — p) + plog(p)).
dr 1

— = 5 ((1 = p)log(1 — p) + plog(p)) + f((* log(1 —p) +log(p)) =

- +1p)2 (21og(1 — p) — log(p))

Setting ¢ dr = 0, obtain:

2log(1 —p) —log(p) =0

p=(1-p)?
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p?=3p+1=0

Obtain: p = 325 Gince 0 <p<land r(X) =0for p =0 and p = 1, by Weiestrass’s theorem:
2

p= % maximizes the entropy rate of this Markov chain. On one hand, Reducing p increases the weight
H(X2|X1 = 0) contributes to the entropy, which helps increase the entropy. On the other hand, reducing p
decreases the value of H(X5|X; = 0). The optimum value is the sweet spot between these tendencies.

5. I(X;Y) = H(X)— H(X[Y). In class we proved that H(X) = 0.5log(2mec?). Hence, it suffices to find
H(X|Y). Recall that X|Y is a normal random variable with variance 02 — po? 1y po? = (1 — p?)o?, which
does not depend on Y. Hence H(X|Y) = 0.5log(2me(1 — p?)o?) if |p| < 1. Thus,

I(X;Y)=H(X) - H(X|Y) = —0.5log((1 — p?))

This value is minimized when p = 0. In this case, the variables are independent and, therefore, there is no
mutual information. When p =1 or p = —1, X is completely determined by Y, and therefore H(X|Y) = 0.
Hence, in this case, I(X;Y) = H(X) and is the maximum value obtainable.

2.5 Problem 5

I(X;Y) = H(X) — H(X|Y). In class we proved that H(X) = 0.5log(2mec?). Hence, it suffices to find
H(X|Y). Recall that X|Y is a normal random variable with variance 0 — po? L po? = (1 — p?)o?, which

o2

does not depend on Y. Hence H(X|Y) = 0.5log(2me(1 — p?)o?) if |p| < 1. Thus,

I(X;Y)=H(X) - H(X|Y) = —0.5log((1 — p?))

This value is minimized when p = 0. In this case, the variables are independent and, therefore, there is no
mutual information. When p =1 or p = —1, X is completely determined by Y, and I(X,Y) = oo

2.6 Problem 6
—H(Y|X) = p() ) plyle)log(p(y|z))
Hence,

V — H(Y|X)(p) = p(x)(log(p(y|z)) + 1)

Similarly, hi(q) = E[ri(X)Y] = >_, ri(z)p(z) 3_, yp(y|x). Thus:

Vhi(p) = ri(z)p(x)y

Finally ho.(p) = 3_, p(y|x) and hence, Vho, = I,. Since —H(Y'|X) is convex and the equality restrictions
are linear, we wish to solve a convex optimization problem. The Lagrangian of this problem is:
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Lp,A) = p(@)(log(p(yl2)) +1) + 3 Ari(@)p(@)y + D Aol
Call >~ Aozl = f(x) and obtain:
L(p, ) = p(z)(log(p(ylz)) + 1) + Z Airi(@)p(x)y + f(2)

Solving for L(p*,A) = 0:

Call g(z) = 7“?(;’)’(:”):

P (yle) = exp (— > Airi(z) + 9(96))
Since p*(0]x) + p(1]z) = 1:

. o exp(= yhiri(x))
P ) = e o 5, yAm (@)

Note that we can cancel out the g(z) from the numerator and the denominator.

Observe that p* clearly satisfies stationarity. Hence, if there exist A;’s such that p* satisfies the constraints,
it also satisfies primal feasiblity. Finally, since the solution follows the inequalities but did not use them as a
constraint, dual feasibility and complementary slackness are also satisfies. Hence, since the KKT conditions
are satisfied, p* maximizes H(Y|X).



