Homework 2: Solution

Lecturer: Aarti Singh

Acknowledgement: The TA graciously thanks Rafael Stern for providing most of these solutions.

2.1 Problem 1

$$
D(q \| p)=\int q \log \left(\frac{q}{p}\right) d x
$$

Hence,

$$
\nabla D(q \| p)=1+\log \left(\frac{q}{p}\right)
$$

Similarly, $h_{i}(q)=E\left[r_{i}(X)\right]=\int r_{i}(x) q d x$. Thus:

$$
\nabla h_{i}(q)=r_{i}(x)
$$

Finally $h_{0}(q)=\int q d x$ and hence, $\nabla h_{0}=1$. Since $D(p \mid q)$ is convex and the equality restrictions are linear, we wish to solve a convex optimization problem. The Lagrangian of this problem is:

$$
L\left(q, \lambda_{i}\right)=\nabla D(q \| p)+\sum_{i=0}^{m} \lambda_{i} \nabla h_{i}(q)
$$

Solving for $L\left(q^{*}, \lambda_{i}\right)=0$, obtain:

$$
1+\log \left(q^{*}\right)-\log (p)+\lambda_{0}+\sum_{i=1}^{m} \lambda_{i} r_{i}(x)=0
$$

Calling $\lambda_{0}^{*}=\lambda_{0}-1$, obtain:

$$
q^{*}=p e^{\lambda_{0}^{*}+\sum_{i=1}^{m} \lambda_{i} r_{i}}
$$

Taking λ_{0}^{*} such that $\int q d x=1$, obtain:

$$
q^{*}=\frac{p e^{\sum_{i=1}^{m} \lambda_{i} r_{i}}}{\sum_{x} p e^{\sum_{i=1}^{m} \lambda_{i} r_{i}}}
$$

Assume there exist unique values for each λ_{i} such that the equality constraints are satisfied. In this case, $\left(q^{*}, \lambda\right)$ clearly satisfy stationarity and primal feasibility. Since there are no inequality conditions, dual
feasibility and complementary slackness are also satisfied. Hence, the KKT conditions are satisfied and q^{*} minimizes $D(q \| p)$.

2.2 Problem 2

By results from class, we need only find constants $\lambda_{0}, \lambda_{1}, \lambda_{2}$ such that the distribution $p(x)=\exp \left(\lambda_{0}+\right.$ $\left.\lambda_{1} x+\lambda_{2} x^{2}\right)$ satisfy the moment constraints.
We inspect the Gaussian pdf with first moment μ and second moment $\sigma^{2}-\mu^{2}$

$$
\begin{aligned}
\phi(x) & =\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}+\frac{x}{\sigma^{2}}-\frac{\mu^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

And we conclude immediately that $\lambda_{1}=\frac{1}{\sigma^{2}}$ and $\lambda_{2}=-\frac{1}{2 \sigma^{2}}$ and λ_{0} is whatever constant required to normalize the distribution.

2.3 Problem 3

Recall that, by HW1 2(b):

$$
H\left(P_{1}, \ldots, P_{n}\right)=\sum_{i=1}^{n} H\left(P_{i} \mid P_{i-1}, \ldots, P_{1}\right) \leq \sum_{i=1}^{n} H\left(P_{i}\right)
$$

The right side is completely determined by the marginals and corresponds exactly to the joint distribution of independent variables. Hence, the result is proven.

2.4 Problem 4

2.4.1 4.1

Let $r(X)$ be the entropy rate of a stocastic process X. Recall that:

$$
r(X)=\lim _{n \rightarrow \infty} \frac{H\left(X_{1}, \ldots, X_{n}\right)}{n}
$$

by HW1 2(b):

$$
H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+\sum_{i=2}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
$$

By the Markovian property, X_{i} is conditionally independent of $\left(X_{i-2}, \ldots, X_{1}\right)$ given X_{i-1}. Hence:

$$
\sum_{i=2}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)=\sum_{i=2}^{n} H\left(X_{i} \mid X_{i-1}\right)
$$

Since the Markov chain is homogeneous and stationary, for all $i, H\left(X_{i} \mid X_{i-1}\right)=H\left(X_{2} \mid X_{1}\right)$. Thus:

$$
r(X)=\lim _{n \rightarrow \infty} \frac{H\left(X_{1}\right)+(n-1) H\left(X_{2} \mid X_{1}\right)}{n}=H\left(X_{2} \mid X_{1}\right)
$$

Finally,

$$
H\left(X_{2} \mid X_{1}\right)=\sum_{i} P\left(X_{1}=i\right) \sum_{j} P\left(X_{2}=j \mid X_{1}=i\right) \log \left(\frac{1}{P\left(X_{2}=j \mid X_{1}=i\right)}\right)
$$

Call P_{i} the $i-t h$ row of P. Observe that:

$$
\sum_{j} P\left(X_{2}=j \mid X_{1}=i\right) \log \left(\frac{1}{P\left(X_{2}=j \mid X_{1}=i\right)}\right)=H\left(P_{i}\right)
$$

Hence, by stationarity:

$$
H\left(X_{2} \mid X_{1}\right)=\sum_{i} P\left(X_{1}=i\right) H\left(P_{i}\right)=\sum_{i} \mu(i) H\left(P_{i}\right)=\mu^{\prime}\left(H\left(P_{i}\right)\right)_{i}
$$

Observe that $r(X)=H\left(X_{2} \mid X_{1}\right) \leq H\left(X_{2}\right)$. If we take the variables to be i.i.d. $H\left(X_{2} \mid X_{1}\right)=H\left(X_{2}\right)$. Finally, $H\left(X_{2}\right)$ is maximized taking the uniform distribution on the support of the Markov chain. Hence, the $r(X)$ is maximized taking P as having all rows equal to $\frac{1}{|S|}$, were S is the support of the Markov chain.

$2.4 .2 \quad 4.2$

The invariant measure is obtained solving for $\mu(1)=p \mu(0)$ and $\mu(0)+\mu(1)=1$, which lead to $\mu(0)=\frac{1}{1+p}$ and $\mu(1)=\frac{p}{1+p}$. From the last item, the entropy rate of the Markov chain is $\mu^{\prime}\left(H\left(P_{i}\right)\right)_{i}$. Observe that P_{1} is degenerate and, therefore, $H\left(P_{1}\right)=0$. Hence, $\mathrm{r}(\mathrm{X})=\frac{-1}{1+p}((1-p) \log (1-p)+p \log (p))$.

$$
\begin{gathered}
\frac{d r}{d p}=\frac{1}{(1+p)^{2}}((1-p) \log (1-p)+p \log (p))+\frac{-1}{1+p}((-\log (1-p)+\log (p))= \\
=\frac{1}{(1+p)^{2}}(2 \log (1-p)-\log (p))
\end{gathered}
$$

Setting $\frac{d r}{d p}=0$, obtain:

$$
\begin{gathered}
2 \log (1-p)-\log (p)=0 \\
p=(1-p)^{2}
\end{gathered}
$$

$$
p^{2}-3 p+1=0
$$

Obtain: $p=\frac{3 \pm \sqrt{5}}{2}$. Since $0 \leq p \leq 1$ and $r(X)=0$ for $p=0$ and $p=1$, by Weiestrass's theorem: $p=\frac{3-\sqrt{5}}{2}$ maximizes the entropy rate of this Markov chain. On one hand, Reducing p increases the weight $H\left(X_{2} \mid X_{1}=0\right)$ contributes to the entropy, which helps increase the entropy. On the other hand, reducing p decreases the value of $H\left(X_{2} \mid X_{1}=0\right)$. The optimum value is the sweet spot between these tendencies.
5. $I(X ; Y)=H(X)-H(X \mid Y)$. In class we proved that $H(X)=0.5 \log \left(2 \pi e \sigma^{2}\right)$. Hence, it suffices to find $H(X \mid Y)$. Recall that $X \mid Y$ is a normal random variable with variance $\sigma^{2}-\rho \sigma^{2} \frac{1}{\sigma^{2}} \rho \sigma^{2}=\left(1-\rho^{2}\right) \sigma^{2}$, which does not depend on Y. Hence $H(X \mid Y)=0.5 \log \left(2 \pi e\left(1-\rho^{2}\right) \sigma^{2}\right)$ if $|\rho|<1$. Thus,

$$
I(X ; Y)=H(X)-H(X \mid Y)=-0.5 \log \left(\left(1-\rho^{2}\right)\right)
$$

This value is minimized when $\rho=0$. In this case, the variables are independent and, therefore, there is no mutual information. When $\rho=1$ or $\rho=-1, X$ is completely determined by Y, and therefore $H(X \mid Y)=0$. Hence, in this case, $I(X ; Y)=H(X)$ and is the maximum value obtainable.

2.5 Problem 5

$I(X ; Y)=H(X)-H(X \mid Y)$. In class we proved that $H(X)=0.5 \log \left(2 \pi e \sigma^{2}\right)$. Hence, it suffices to find $H(X \mid Y)$. Recall that $X \mid Y$ is a normal random variable with variance $\sigma^{2}-\rho \sigma^{2} \frac{1}{\sigma^{2}} \rho \sigma^{2}=\left(1-\rho^{2}\right) \sigma^{2}$, which does not depend on Y. Hence $H(X \mid Y)=0.5 \log \left(2 \pi e\left(1-\rho^{2}\right) \sigma^{2}\right)$ if $|\rho|<1$. Thus,

$$
I(X ; Y)=H(X)-H(X \mid Y)=-0.5 \log \left(\left(1-\rho^{2}\right)\right)
$$

This value is minimized when $\rho=0$. In this case, the variables are independent and, therefore, there is no mutual information. When $\rho=1$ or $\rho=-1, X$ is completely determined by Y, and $I(X, Y)=\infty$

2.6 Problem 6

$$
-H(Y \mid X)=\sum_{x} p(x) \sum_{y} p(y \mid x) \log (p(y \mid x))
$$

Hence,

$$
\nabla-H(Y \mid X)(p)=p(x)(\log (p(y \mid x))+1)
$$

Similarly, $h_{i}(q)=E\left[r_{i}(X) Y\right]=\sum_{x} r_{i}(x) p(x) \sum_{y} y p(y \mid x)$. Thus:

$$
\nabla h_{i}(p)=r_{i}(x) p(x) y
$$

Finally $h_{0, x}(p)=\sum_{y} p(y \mid x)$ and hence, $\nabla h_{0, x}=I_{x}$. Since $-H(Y \mid X)$ is convex and the equality restrictions are linear, we wish to solve a convex optimization problem. The Lagrangian of this problem is:

$$
L(p, \lambda)=p(x)(\log (p(y \mid x))+1)+\sum_{i} \lambda_{i} r_{i}(x) p(x) y+\sum_{x} \lambda_{0, x} I_{x}
$$

Call $\sum_{x} \lambda_{0, x} I_{x}=f(x)$ and obtain:

$$
L(p, \lambda)=p(x)(\log (p(y \mid x))+1)+\sum_{i} \lambda_{i} r_{i}(x) p(x) y+f(x)
$$

Solving for $L\left(p^{*}, \lambda\right)=0$:

$$
p^{*}(y \mid x)=\exp \left(\frac{-\sum_{i} \lambda_{i} r_{i}(x) p(x) y+f(x)-p(x)}{p(x)}\right)=
$$

Call $g(x)=\frac{f(x)-p(x)}{p(x)}$:

$$
p^{*}(y \mid x)=\exp \left(-\sum_{i} y \lambda_{i} r_{i}(x)+g(x)\right)
$$

Since $p^{*}(0 \mid x)+p(1 \mid x)=1$:

$$
p^{*}(y \mid x)=\frac{\exp \left(-\sum_{i} y \lambda_{i} r_{i}(x)\right)}{1+\exp \left(-\sum_{i} y \lambda_{i} r_{i}(x)\right)}
$$

Note that we can cancel out the $g(x)$ from the numerator and the denominator.
Observe that p^{*} clearly satisfies stationarity. Hence, if there exist λ_{i} 's such that p^{*} satisfies the constraints, it also satisfies primal feasiblity. Finally, since the solution follows the inequalities but did not use them as a constraint, dual feasibility and complementary slackness are also satisfies. Hence, since the KKT conditions are satisfied, p^{*} maximizes $H(Y \mid X)$.

