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2.1 Problem 1

D(q||p) =

∫
q log

(
q

p

)
dx

Hence,

∇D(q||p) = 1 + log

(
q

p

)
Similarly, hi(q) = E[ri(X)] =

∫
ri(x)qdx. Thus:

∇hi(q) = ri(x)

Finally h0(q) =
∫
qdx and hence, ∇h0 = 1. Since D(p|q) is convex and the equality restrictions are linear,

we wish to solve a convex optimization problem. The Lagrangian of this problem is:

L(q, λi) = ∇D(q||p) +

m∑
i=0

λi∇hi(q)

Solving for L(q∗, λi) = 0, obtain:

1 + log(q∗)− log(p) + λ0 +

m∑
i=1

λiri(x) = 0

Calling λ∗0 = λ0 − 1, obtain:

q∗ = peλ
∗
0+

∑m
i=1 λiri

Taking λ∗0 such that
∫
qdx = 1, obtain:

q∗ =
pe

∑m
i=1 λiri∑

x pe
∑m

i=1 λiri

Assume there exist unique values for each λi such that the equality constraints are satisfied. In this case,
(q∗, λ) clearly satisfy stationarity and primal feasibility. Since there are no inequality conditions, dual
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feasibility and complementary slackness are also satisfied. Hence, the KKT conditions are satisfied and q∗

minimizes D(q||p).

2.2 Problem 2

By results from class, we need only find constants λ0, λ1, λ2 such that the distribution p(x) = exp(λ0 +
λ1x+ λ2x

2) satisfy the moment constraints.

We inspect the Gaussian pdf with first moment µ and second moment σ2 − µ2

φ(x) =
1

σ
√

2π
exp(− (x− µ)2

2σ2
)

=
1

σ
√

2π
exp(− x2

2σ2
+

x

σ2
− µ2

2σ2
)

And we conclude immediately that λ1 = 1
σ2 and λ2 = − 1

2σ2 and λ0 is whatever constant required to normalize
the distribution.

2.3 Problem 3

Recall that, by HW1 2(b):

H(P1, . . . , Pn) =

n∑
i=1

H(Pi|Pi−1, . . . , P1) ≤
n∑
i=1

H(Pi)

The right side is completely determined by the marginals and corresponds exactly to the joint distribution
of independent variables. Hence, the result is proven.

2.4 Problem 4

2.4.1 4.1

Let r(X) be the entropy rate of a stocastic process X. Recall that:

r(X) = lim
n→∞

H(X1, . . . , Xn)

n

by HW1 2(b):

H(X1, . . . , Xn) = H(X1) +
n∑
i=2

H(Xi|Xi−1, . . . , X1)

By the Markovian property, Xi is conditionally independent of (Xi−2, . . . , X1) given Xi−1. Hence:
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n∑
i=2

H(Xi|Xi−1, . . . , X1) =

n∑
i=2

H(Xi|Xi−1)

Since the Markov chain is homogeneous and stationary, for all i, H(Xi|Xi−1) = H(X2|X1). Thus:

r(X) = lim
n→∞

H(X1) + (n− 1)H(X2|X1)

n
= H(X2|X1)

Finally,

H(X2|X1) =
∑
i

P (X1 = i)
∑
j

P (X2 = j|X1 = i) log

(
1

P (X2 = j|X1 = i)

)

Call Pi the i− th row of P . Observe that:

∑
j

P (X2 = j|X1 = i) log

(
1

P (X2 = j|X1 = i)

)
= H(Pi)

Hence, by stationarity:

H(X2|X1) =
∑
i

P (X1 = i)H(Pi) =
∑
i

µ(i)H(Pi) = µ
′
(H(Pi))i

Observe that r(X) = H(X2|X1) ≤ H(X2). If we take the variables to be i.i.d. H(X2|X1) = H(X2). Finally,
H(X2) is maximized taking the uniform distribution on the support of the Markov chain. Hence, the r(X)
is maximized taking P as having all rows equal to 1

|S| , were S is the support of the Markov chain.

2.4.2 4.2

The invariant measure is obtained solving for µ(1) = pµ(0) and µ(0) + µ(1) = 1, which lead to µ(0) = 1
1+p

and µ(1) = p
1+p . From the last item, the entropy rate of the Markov chain is µ

′
(H(Pi))i. Observe that P1

is degenerate and, therefore, H(P1) = 0. Hence, r(X) = −1
1+p ((1− p) log(1− p) + p log(p)).

dr

dp
=

1

(1 + p)2
((1− p) log(1− p) + p log(p)) +

−1

1 + p
((− log(1− p) + log(p)) =

=
1

(1 + p)2
(2 log(1− p)− log(p))

Setting dr
dp = 0, obtain:

2 log(1− p)− log(p) = 0

p = (1− p)2
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p2 − 3p+ 1 = 0

Obtain: p = 3±
√
5

2 . Since 0 ≤ p ≤ 1 and r(X) = 0 for p = 0 and p = 1, by Weiestrass’s theorem:

p = 3−
√
5

2 maximizes the entropy rate of this Markov chain. On one hand, Reducing p increases the weight
H(X2|X1 = 0) contributes to the entropy, which helps increase the entropy. On the other hand, reducing p
decreases the value of H(X2|X1 = 0). The optimum value is the sweet spot between these tendencies.

5. I(X;Y ) = H(X) −H(X|Y ). In class we proved that H(X) = 0.5 log(2πeσ2). Hence, it suffices to find
H(X|Y ). Recall that X|Y is a normal random variable with variance σ2 − ρσ2 1

σ2 ρσ
2 = (1 − ρ2)σ2, which

does not depend on Y . Hence H(X|Y ) = 0.5 log(2πe(1− ρ2)σ2) if |ρ| < 1. Thus,

I(X;Y ) = H(X)−H(X|Y ) = −0.5 log((1− ρ2))

This value is minimized when ρ = 0. In this case, the variables are independent and, therefore, there is no
mutual information. When ρ = 1 or ρ = −1, X is completely determined by Y , and therefore H(X|Y ) = 0.
Hence, in this case, I(X;Y ) = H(X) and is the maximum value obtainable.

2.5 Problem 5

I(X;Y ) = H(X) − H(X|Y ). In class we proved that H(X) = 0.5 log(2πeσ2). Hence, it suffices to find
H(X|Y ). Recall that X|Y is a normal random variable with variance σ2 − ρσ2 1

σ2 ρσ
2 = (1 − ρ2)σ2, which

does not depend on Y . Hence H(X|Y ) = 0.5 log(2πe(1− ρ2)σ2) if |ρ| < 1. Thus,

I(X;Y ) = H(X)−H(X|Y ) = −0.5 log((1− ρ2))

This value is minimized when ρ = 0. In this case, the variables are independent and, therefore, there is no
mutual information. When ρ = 1 or ρ = −1, X is completely determined by Y , and I(X,Y ) =∞

2.6 Problem 6

−H(Y |X) =
∑
x

p(x)
∑
y

p(y|x) log(p(y|x))

Hence,

∇−H(Y |X)(p) = p(x)(log(p(y|x)) + 1)

Similarly, hi(q) = E[ri(X)Y ] =
∑
x ri(x)p(x)

∑
y yp(y|x). Thus:

∇hi(p) = ri(x)p(x)y

Finally h0,x(p) =
∑
y p(y|x) and hence, ∇h0,x = Ix. Since −H(Y |X) is convex and the equality restrictions

are linear, we wish to solve a convex optimization problem. The Lagrangian of this problem is:



Lecture 2: Solution 2-5

L(p, λ) = p(x)(log(p(y|x)) + 1) +
∑
i

λiri(x)p(x)y +
∑
x

λ0,xIx

Call
∑
x λ0,xIx = f(x) and obtain:

L(p, λ) = p(x)(log(p(y|x)) + 1) +
∑
i

λiri(x)p(x)y + f(x)

Solving for L(p∗, λ) = 0:

p∗(y|x) = exp

(
−
∑
i λiri(x)p(x)y + f(x)− p(x)

p(x)

)
=

Call g(x) = f(x)−p(x)
p(x) :

p∗(y|x) = exp

(
−
∑
i

yλiri(x) + g(x)

)

Since p∗(0|x) + p(1|x) = 1:

p∗(y|x) =
exp (−

∑
i yλiri(x))

1 + exp (−
∑
i yλiri(x))

Note that we can cancel out the g(x) from the numerator and the denominator.

Observe that p∗ clearly satisfies stationarity. Hence, if there exist λi’s such that p∗ satisfies the constraints,
it also satisfies primal feasiblity. Finally, since the solution follows the inequalities but did not use them as a
constraint, dual feasibility and complementary slackness are also satisfies. Hence, since the KKT conditions
are satisfied, p∗ maximizes H(Y |X).


