10-704: Information Processing and Learning Spring 2012

Homework 1: Solution
Lecturer: Aarti Singh

Acknowledgement: The TA graciously thanks Rafael Stern for providing most of the solutions.

1.1 Problem 1

1.1.1 1.1

Weighing 6 balls vs 6 balls yields only two possible outcomes: left heavier or right heavier. Hence, any
weighing scheme that at any point weighs 6 vs 6 can yields, in 3 weighings, at most 2 x 3 * 3 = 18 possible
outcomes. However, to distinguish the special ball and determine whether it is heavier or lighter, we need
to our method to differentiate between 24 possible cases. 18 < 24, and hence, we need at least 4 weighings.
Since the optimal method uses 3 weighings, this is suboptimal.

1.1.2 1.2

We can use similar reasoning as 1.1.

Suppose that the outcome of the first weighing is that the two sets of 3 balls are equally heavy, then the odd
ball must be in the remaining 6 balls. We must then be able to differentiate between 12 cases. Therefore,
we need at least 3 additional weighings to find the odd ball in the remaining 6 balls.

We can then conclude that any method that weighs 3 balls versus 3 balls in its first weighing needs at least
4 weighings.

1.1.3 1.3

See figure 1.1.3

1.2 Problem 2

1.2.1 2.1

To prove that H(X|Y) < H(X), recall that H(X) = H(X|Y) + I(X;Y). Hence, it is enough to show that
I(X;Y) > 0, Observe that I(X;Y) = Dgr(p(x,y); p(z)p(y)). Thus, by Gibb’s Inequality, I(X;Y) > 0 and
the desired result is established.

Next, say that a variable has distribution S(p) if P(X = 1) =p and P(X = —1) =1 —p. Define X ~ S(0.5)
and Z ~ S(0.5) independent random variables. Consider Y = X Z. Observe that Y is independent of X and,
thus, I(X;Y) = 0. Observe that, given no value of Z, X and Y are independent, that is, I(X;Y|Z = z) > 0.
Thus, I(X;Y]Z) >0=I(X;Y).
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1.2.2 2.2

Lets prove this result by induction. The case n = 2 was shown in class, hence it is only necessary to prove
the inductive step. Lets assume that the equality works for n and show that it works for n + 1.

H(Xy,...,Xn41) = — Z p(x1,. ., py1) log(p(zy, ..., Tpy1)) =

T1yeesTn+1

== Y plenzap)log@an)) = Y0 plen,wa) log(plen, . zaleat) =

L1y Tl L1y Tt

= - Z P(Tni1)log(p(Tng1)) — Z P(Tpy1) Z p(x1, .. TnlTayr)log(p(ey, . .o Tnl|Thyr)) =

Tn+1 Tn+1 L1y--e3Tm

= H(Xp11) + Z p(znt)H(p(21, ... 2pl2pg1)) =

Tn41

Ca'lhng p<xa1a s Lay [Thys - vy Thy, xn+1) =z, (xal yoo Lay ‘xblﬂ te 7xbn)

=H(Xn41) + Z P(@ns1)H(qo, (21, T0)) =

Tnt1

By the induction hypothesis:

Z p<xn+1)H(qﬂvn+1 (3317 cees mn)) = Z p<xn+l> Z H(qwn+1 ($n7i|$m e 7$n7i+1)) =

Tp+1 Tn41

= ZH(Xn+lfi|Xn+17 vy Xnyai)

i>1

Substituting this expression in the main equality:

H(X1,. o X)) = Y H(Xnp1—il Xog1, - Xngai)

i>0

Which completes the proof. Equality holds when X7, ..., X, are jointly independent, that is, any two disjoint
subsets of (Xi,...,X,,) are independent.

1.2.3 2.3

Applying item (b) twice:
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= zn:(H(Xi|Xi—17---7X1) - H(Xi[Xi—1,.... X0, Y)) + H(Y) - H(Y) =

i=1

=3 I(XiY|Xio1,..., X1)
i=1

1.24 24

Note: many of you did not prove the first part—that D(-||-) is convex. Rafael’s solution is very slick and I
recommend that you take a look if you hadn’t proved it yourself.

Drr(Ap1+ (1 = Np2|[Ag1 + (1 = N)g2) < ADkr(pillg1) + (1 — A\) Dk r(p2|lg2)

Ap1 + (1= AN)p2

D (Ap1 4 (1 = XN)p2||Aq1 + (1 = N)ga2) = /(Apl + (1= A)p2) 10g(m)d$ =
_ Ap1 Aq1 Ap2 (1-MNgo
== [ (G R S () S

<~ [ A 1og(%) + (1= Npalog(2)ds = ADics(nlla) + (1~ D pel )
We wish to prove that H(Ap; + (1 — X)p2) > AH(p1) + (1 — A)H(p2). Take X ~ p; and Y ~ ps. Consider
& ~ Ber(\) independent of X and Y. Define Z = £X + (1 — £)Y. Observe that Z ~ Ap; + (1 — A\)p2. Hence
the left hand side of the inequality equals H(Z). Observe that the right hand side equals H(Z|B) and, thus,
by Exercise 2a, the proof is complete.

1.3 Problem 3

1.3.1 3.1

Using the data processing inequality, we know that I(U;V) < I(X;V). Hence, we only need to prove that
I(X;V) <I(X;Y). By symmetry of mutual information, this is equivalent to show that I(V, X) < I(Y; X).
If we could invert the graph as in the hint, we could establish this inequality by using the data processing
inequality once again. Hence, it only remains to prove that X — Y — Z implies Z — Y — X.

Assume X — Y — Z. Hence, p(z,y,2) = p(z)p(y|x)p(z|y) Using Bayes Rule, conclude that: p(x,y,z) =
p(z|ly)p(y)p(z|ly). Finally, using Bayes Rule again: p(z,y,2) = p(z|y)p(y|z)p(z). Since z,y and z were
arbitrary, we have established that Z — Y — X, which completes the proof.

1.3.2 3.2

n

f@r, . 2nl0) = [ [ Tig.00) (@) - o004y () =

i=1
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= [T Tio.001 (@) T [ Ti=c00411 () = T,00) (1)) [ —o0,041) (T (m))

=1 i=1

Hence, by Fisher’s Factorization Theorem, T is a sufficient statistic for 6 in the statistical sense. Hence, by
the result seen during Recitation 1, it is also sufficient in the information theoretic sense.
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Figure 1.1: Solution to Problem 1.3
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