Homework 1: Solution

Lecturer: Aarti Singh

Acknowledgement: The TA graciously thanks Rafael Stern for providing most of the solutions.

1.1 Problem 1

1.1.1 1.1

Weighing 6 balls vs 6 balls yields only two possible outcomes: left heavier or right heavier. Hence, any weighing scheme that at any point weighs 6 vs 6 can yields, in 3 weighings, at most $2 * 3 * 3=18$ possible outcomes. However, to distinguish the special ball and determine whether it is heavier or lighter, we need to our method to differentiate between 24 possible cases. $18<24$, and hence, we need at least 4 weighings. Since the optimal method uses 3 weighings, this is suboptimal.

1.1.2 1.2

We can use similar reasoning as 1.1.
Suppose that the outcome of the first weighing is that the two sets of 3 balls are equally heavy, then the odd ball must be in the remaining 6 balls. We must then be able to differentiate between 12 cases. Therefore, we need at least 3 additional weighings to find the odd ball in the remaining 6 balls.

We can then conclude that any method that weighs 3 balls versus 3 balls in its first weighing needs at least 4 weighings.

1.1.3 1.3

See figure 1.1.3

1.2 Problem 2

1.2.1 2.1

To prove that $H(X \mid Y) \leq H(X)$, recall that $H(X)=H(X \mid Y)+I(X ; Y)$. Hence, it is enough to show that $I(X ; Y) \geq 0$, Observe that $I(X ; Y)=D_{K L}(p(x, y) ; p(x) p(y))$. Thus, by Gibb's Inequality, $I(X ; Y) \geq 0$ and the desired result is established.

Next, say that a variable has distribution $S(p)$ if $P(X=1)=p$ and $P(X=-1)=1-p$. Define $X \sim S(0.5)$ and $Z \sim S(0.5)$ independent random variables. Consider $Y=X Z$. Observe that Y is independent of X and, thus, $I(X ; Y)=0$. Observe that, given no value of Z, X and Y are independent, that is, $I(X ; Y \mid Z=z)>0$. Thus, $I(X ; Y \mid Z)>0=I(X ; Y)$.

$1.2 .2 \quad 2.2$

Lets prove this result by induction. The case $n=2$ was shown in class, hence it is only necessary to prove the inductive step. Lets assume that the equality works for n and show that it works for $n+1$.

$$
\begin{gathered}
H\left(X_{1}, \ldots, X_{n+1}\right)=-\sum_{x_{1}, \ldots, x_{n+1}} p\left(x_{1}, \ldots, x_{n+1}\right) \log \left(p\left(x_{1}, \ldots, x_{n+1}\right)\right)= \\
=-\sum_{x_{1}, \ldots, x_{n+1}} p\left(x_{1}, \ldots, x_{n+1}\right) \log \left(p\left(x_{n+1}\right)\right)-\sum_{x_{1}, \ldots, x_{n+1}} p\left(x_{1}, \ldots, x_{n+1}\right) \log \left(p\left(x_{1}, \ldots, x_{n} \mid x_{n+1}\right)\right)= \\
=-\sum_{x_{n+1}} p\left(x_{n+1}\right) \log \left(p\left(x_{n+1}\right)\right)-\sum_{x_{n+1}} p\left(x_{n+1}\right) \sum_{x_{1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n} \mid x_{n+1}\right) \log \left(p\left(x_{1}, \ldots, x_{n} \mid x_{n+1}\right)\right)= \\
=H\left(X_{n+1}\right)+\sum_{x_{n+1}} p\left(x_{n+1}\right) H\left(p\left(x_{1}, \ldots, x_{n} \mid x_{n+1}\right)\right)=
\end{gathered}
$$

Calling $p\left(x_{a_{1}}, \ldots, x_{a_{n}} \mid x_{b_{1}}, \ldots, x_{b_{n}}, x_{n+1}\right)=q_{x_{n+1}}\left(x_{a_{1}}, \ldots, x_{a_{n}} \mid x_{b_{1}}, \ldots, x_{b_{n}}\right)$

$$
=H\left(X_{n+1}\right)+\sum_{x_{n+1}} p\left(x_{n+1}\right) H\left(q_{x_{n+1}}\left(x_{1}, \ldots, x_{n}\right)\right)=
$$

By the induction hypothesis:

$$
\begin{gathered}
\sum_{x_{n+1}} p\left(x_{n+1}\right) H\left(q_{x_{n+1}}\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{x_{n+1}} p\left(x_{n+1}\right) \sum_{i} H\left(q_{x_{n+1}}\left(x_{n-i} \mid x_{n}, \ldots, x_{n-i+1}\right)\right)= \\
=\sum_{i \geq 1} H\left(X_{n+1-i} \mid X_{n+1}, \ldots, X_{n+2-i}\right)
\end{gathered}
$$

Substituting this expression in the main equality:

$$
H\left(X_{1}, \ldots, X_{n+1}\right)=\sum_{i \geq 0} H\left(X_{n+1-i} \mid X_{n+1}, \ldots, X_{n+2-i}\right)
$$

Which completes the proof. Equality holds when X_{1}, \ldots, X_{n} are jointly independent, that is, any two disjoint subsets of $\left(X_{1}, \ldots, X_{n}\right)$ are independent.

$1.2 .3 \quad 2.3$

$$
\begin{aligned}
& I\left(X_{1}, \ldots, X_{n} ; Y\right)=H\left(X_{1}, \ldots, X_{n}\right)-H\left(X_{1}, \ldots, X_{n} \mid Y\right)= \\
& \quad=H\left(X_{1}, \ldots, X_{n}\right)-H\left(X_{1}, \ldots, X_{n}, Y\right)-H(Y)=
\end{aligned}
$$

Applying item (b) twice:

$$
\begin{gathered}
=\sum_{i=1}^{n}\left(H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)-H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}, Y\right)\right)+H(Y)-H(Y)= \\
=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{i-1}, \ldots, X_{1}\right)
\end{gathered}
$$

1.2.4 2.4

Note: many of you did not prove the first part-that $D(\cdot \| \cdot)$ is convex. Rafael's solution is very slick and I recommend that you take a look if you hadn't proved it yourself.

$$
\begin{gathered}
D_{K L}\left(\lambda p_{1}+(1-\lambda) p_{2} \| \lambda q_{1}+(1-\lambda) q_{2}\right) \leq \lambda D_{K L}\left(p_{1} \| q_{1}\right)+(1-\lambda) D_{K L}\left(p_{2} \| q_{2}\right) \\
D_{K L}\left(\lambda p_{1}+(1-\lambda) p_{2} \| \lambda q_{1}+(1-\lambda) q_{2}\right)=\int\left(\lambda p_{1}+(1-\lambda) p_{2}\right) \log \left(\frac{\lambda p_{1}+(1-\lambda) p_{2}}{\left.\lambda q_{1}+(1-\lambda) q_{2}\right)}\right) d x= \\
=-\int\left(\lambda p_{1}+(1-\lambda) p_{2}\right) \log \left(\frac{\lambda p_{1}}{\lambda p_{1}+(1-\lambda) p_{2}} \cdot \frac{\lambda q_{1}}{\lambda p_{1}}+\frac{\lambda p_{2}}{\lambda p_{1}+(1-\lambda) p_{2}} \cdot \frac{(1-\lambda) q_{2}}{(1-\lambda) p_{2}}\right) d x \leq \\
\leq-\int \lambda p_{1} \log \left(\frac{q_{1}}{p_{1}}\right)+(1-\lambda) p_{2} \log \left(\frac{q_{2}}{p_{2}}\right) d x=\lambda D_{K L}\left(p_{1} \| q_{1}\right)+(1-\lambda) D_{K L}\left(p_{2} \| q_{2}\right)
\end{gathered}
$$

We wish to prove that $H\left(\lambda p_{1}+(1-\lambda) p_{2}\right) \geq \lambda H\left(p_{1}\right)+(1-\lambda) H\left(p_{2}\right)$. Take $X \sim p_{1}$ and $Y \sim p_{2}$. Consider $\xi \sim \operatorname{Ber}(\lambda)$ independent of X and Y. Define $Z=\xi X+(1-\xi) Y$. Observe that $Z \sim \lambda p_{1}+(1-\lambda) p_{2}$. Hence the left hand side of the inequality equals $H(Z)$. Observe that the right hand side equals $H(Z \mid B)$ and, thus, by Exercise 2a, the proof is complete.

1.3 Problem 3

1.3.1 3.1

Using the data processing inequality, we know that $I(U ; V) \leq I(X ; V)$. Hence, we only need to prove that $I(X ; V) \leq I(X ; Y)$. By symmetry of mutual information, this is equivalent to show that $I(V, X) \leq I(Y ; X)$. If we could invert the graph as in the hint, we could establish this inequality by using the data processing inequality once again. Hence, it only remains to prove that $X \rightarrow Y \rightarrow Z$ implies $Z \rightarrow Y \rightarrow X$.

Assume $X \rightarrow Y \rightarrow Z$. Hence, $p(x, y, z)=p(x) p(y \mid x) p(z \mid y)$ Using Bayes Rule, conclude that: $p(x, y, z)=$ $p(x \mid y) p(y) p(z \mid y)$. Finally, using Bayes Rule again: $p(x, y, z)=p(x \mid y) p(y \mid z) p(z)$. Since x, y and z were arbitrary, we have established that $Z \rightarrow Y \rightarrow X$, which completes the proof.

1.3.2 3.2

$$
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} I_{[\theta, \infty]}\left(x_{i}\right) I_{[-\infty, \theta+1]}\left(x_{i}\right)=
$$

$$
=\prod_{i=1}^{n} I_{[\theta, \infty]}\left(x_{i}\right) \prod_{i=1}^{n} I_{[-\infty, \theta+1]}\left(x_{i}\right)=I_{[\theta, \infty]}\left(x_{(1)}\right) I_{[-\infty, \theta+1]}\left(x_{(n)}\right)
$$

Hence, by Fisher's Factorization Theorem, T is a sufficient statistic for θ in the statistical sense. Hence, by the result seen during Recitation 1, it is also sufficient in the information theoretic sense.

Figure 1.1: Solution to Problem 1.3

