
10-704: Information Processing and Learning Spring 2012
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Acknowledgement: The TA graciously thanks Rafael Stern for providing most of the solutions.

1.1 Problem 1

1.1.1 1.1

Weighing 6 balls vs 6 balls yields only two possible outcomes: left heavier or right heavier. Hence, any
weighing scheme that at any point weighs 6 vs 6 can yields, in 3 weighings, at most 2 ∗ 3 ∗ 3 = 18 possible
outcomes. However, to distinguish the special ball and determine whether it is heavier or lighter, we need
to our method to differentiate between 24 possible cases. 18 < 24, and hence, we need at least 4 weighings.
Since the optimal method uses 3 weighings, this is suboptimal.

1.1.2 1.2

We can use similar reasoning as 1.1.

Suppose that the outcome of the first weighing is that the two sets of 3 balls are equally heavy, then the odd
ball must be in the remaining 6 balls. We must then be able to differentiate between 12 cases. Therefore,
we need at least 3 additional weighings to find the odd ball in the remaining 6 balls.

We can then conclude that any method that weighs 3 balls versus 3 balls in its first weighing needs at least
4 weighings.

1.1.3 1.3

See figure 1.1.3

1.2 Problem 2

1.2.1 2.1

To prove that H(X|Y ) ≤ H(X), recall that H(X) = H(X|Y ) + I(X;Y ). Hence, it is enough to show that
I(X;Y ) ≥ 0, Observe that I(X;Y ) = DKL(p(x, y); p(x)p(y)). Thus, by Gibb’s Inequality, I(X;Y ) ≥ 0 and
the desired result is established.

Next, say that a variable has distribution S(p) if P (X = 1) = p and P (X = −1) = 1− p. Define X ∼ S(0.5)
and Z ∼ S(0.5) independent random variables. Consider Y = XZ. Observe that Y is independent of X and,
thus, I(X;Y ) = 0. Observe that, given no value of Z, X and Y are independent, that is, I(X;Y |Z = z) > 0.
Thus, I(X;Y |Z) > 0 = I(X;Y ).
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1.2.2 2.2

Lets prove this result by induction. The case n = 2 was shown in class, hence it is only necessary to prove
the inductive step. Lets assume that the equality works for n and show that it works for n+ 1.

H(X1, . . . , Xn+1) = −
∑

x1,...,xn+1

p(x1, . . . , xn+1) log(p(x1, . . . , xn+1)) =

= −
∑

x1,...,xn+1

p(x1, . . . , xn+1) log(p(xn+1))−
∑

x1,...,xn+1

p(x1, . . . , xn+1) log(p(x1, . . . , xn|xn+1)) =

= −
∑
xn+1

p(xn+1) log(p(xn+1))−
∑
xn+1

p(xn+1)
∑

x1,...,xn

p(x1, . . . , xn|xn+1) log(p(x1, . . . , xn|xn+1)) =

= H(Xn+1) +
∑
xn+1

p(xn+1)H(p(x1, . . . , xn|xn+1)) =

Calling p(xa1 , . . . , xan |xb1 , . . . , xbn , xn+1) = qxn+1
(xa1 , . . . , xan |xb1 , . . . , xbn)

= H(Xn+1) +
∑
xn+1

p(xn+1)H(qxn+1
(x1, . . . , xn)) =

By the induction hypothesis:

∑
xn+1

p(xn+1)H(qxn+1
(x1, . . . , xn)) =

∑
xn+1

p(xn+1)
∑
i

H(qxn+1
(xn−i|xn, . . . , xn−i+1)) =

=
∑
i≥1

H(Xn+1−i|Xn+1, . . . , Xn+2−i)

Substituting this expression in the main equality:

H(X1, . . . , Xn+1) =
∑
i≥0

H(Xn+1−i|Xn+1, . . . , Xn+2−i)

Which completes the proof. Equality holds when X1, . . . , Xn are jointly independent, that is, any two disjoint
subsets of (X1, . . . , Xn) are independent.

1.2.3 2.3

I(X1, . . . , Xn;Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y ) =

= H(X1, . . . , Xn)−H(X1, . . . , Xn, Y )−H(Y ) =

Applying item (b) twice:
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=

n∑
i=1

(H(Xi|Xi−1, . . . , X1)−H(Xi|Xi−1, . . . , X1, Y )) +H(Y )−H(Y ) =

=

n∑
i=1

I(Xi;Y |Xi−1, . . . , X1)

1.2.4 2.4

Note: many of you did not prove the first part–that D(· || ·) is convex. Rafael’s solution is very slick and I
recommend that you take a look if you hadn’t proved it yourself.

DKL(λp1 + (1− λ)p2||λq1 + (1− λ)q2) ≤ λDKL(p1||q1) + (1− λ)DKL(p2||q2)

DKL(λp1 + (1− λ)p2||λq1 + (1− λ)q2) =

∫
(λp1 + (1− λ)p2) log(

λp1 + (1− λ)p2
λq1 + (1− λ)q2)

)dx =

= −
∫

(λp1 + (1− λ)p2) log

(
λp1

λp1 + (1− λ)p2
· λq1
λp1

+
λp2

λp1 + (1− λ)p2
· (1− λ)q2

(1− λ)p2

)
dx ≤

≤ −
∫
λp1 log(

q1
p1

) + (1− λ)p2 log(
q2
p2

)dx = λDKL(p1||q1) + (1− λ)DKL(p2||q2)

We wish to prove that H(λp1 + (1 − λ)p2) ≥ λH(p1) + (1 − λ)H(p2). Take X ∼ p1 and Y ∼ p2. Consider
ξ ∼ Ber(λ) independent of X and Y . Define Z = ξX + (1− ξ)Y . Observe that Z ∼ λp1 + (1− λ)p2. Hence
the left hand side of the inequality equals H(Z). Observe that the right hand side equals H(Z|B) and, thus,
by Exercise 2a, the proof is complete.

1.3 Problem 3

1.3.1 3.1

Using the data processing inequality, we know that I(U ;V ) ≤ I(X;V ). Hence, we only need to prove that
I(X;V ) ≤ I(X;Y ). By symmetry of mutual information, this is equivalent to show that I(V,X) ≤ I(Y ;X).
If we could invert the graph as in the hint, we could establish this inequality by using the data processing
inequality once again. Hence, it only remains to prove that X → Y → Z implies Z → Y → X.

Assume X → Y → Z. Hence, p(x, y, z) = p(x)p(y|x)p(z|y) Using Bayes Rule, conclude that: p(x, y, z) =
p(x|y)p(y)p(z|y). Finally, using Bayes Rule again: p(x, y, z) = p(x|y)p(y|z)p(z). Since x, y and z were
arbitrary, we have established that Z → Y → X, which completes the proof.

1.3.2 3.2

f(x1, . . . , xn|θ) =

n∏
i=1

I[θ,∞](xi)I[−∞,θ+1](xi) =
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=

n∏
i=1

I[θ,∞](xi)

n∏
i=1

I[−∞,θ+1](xi) = I[θ,∞](x(1))I[−∞,θ+1](x(n))

Hence, by Fisher’s Factorization Theorem, T is a sufficient statistic for θ in the statistical sense. Hence, by
the result seen during Recitation 1, it is also sufficient in the information theoretic sense.
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Figure 1.1: Solution to Problem 1.3


