
10-704: Information Processing and Learning Spring 2012

Lecture 9: Arithmetic Coding and Universal Codes
Lecturer: Aarti Singh Scribes: Andrew Rodriguez

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Arithmetic Codes

One of the main drawbacks of Shannon codes and Huffman codes is that we need to compute the probability
of sequences of symbols before we can code (Recall we want to encode sequences to get close to entropy).
Once we do so, the codes are only good as long as the underlying probability distribution does not change.
To address this issue, we introduce Arithmetic codes.

Arithmetic codes are family of streaming codes that code symbols sequentially and can adapt to changing dis-
tributions. It’s usually assumed that both the encoder and decoder have the same predictor p(xn|x1, . . . , xn−1).
If we have a good predictor, we should be able to encode well.

9.2 Encoding

Arithmetic codes map streams of symbols to a real number between 0 and 1. The first observation is that
binary strings define points in [0, 1). A string x1, . . . , xn maps to the binary number 0.x1x2 . . . xn which is
equal to

∑
i xi2

−i. Let’s define our alphabet to be {a1 . . . a|X |}.

We start by dividing the interval [0, 1) into |X | intervals, each with length pi = p(x1 = ai) for i = 1, . . . ,X .
Then, after seeing that x1 = ai, we subdivide interval p(x1 = ai) further into |X | sub-intervals so that the
lengths of the sub-intervals are proportional to the probability of the second symbol (p(x2 = aj |x1 = ai) for
j = 1, . . . ,X). Note that the length of the intervals at this second stage is p(x2 = aj |x1 = ai)p(x1 = ai) =
p(x2 = aj , x1 = ai).

After seeing that the second symbol x2 = aj , we subdivide the interval p(x2 = aj |x1 = ai) into |X |
sub-intervals so that the lengths of the sub-intervals are proportional to p(x3 = ak |x2 = aj , x1 = ai) for
k = 1, . . . ,X . Note that if xn is generated by a Markov chain, then p(x3 = ak |x2 = aj , x1 = ai) = p(x3 =
ak |x2 = aj). The length of the intervals at this third stage is p(x3 = ak |x2 = aj , x1 = ai)p(x2 = aj , x1 =
ai) = p(x3 = ak, x2 = aj , xi = ai).

We continue this process until we’ve consumed the entire input. At this point, we say that the interval for
xn is [L(xn), R(xn)) where L and R are the left and right endpoints respectively. Because all the intervals
are contained in [0, 1) and

∑
xn p(xn) = 1, R(xn) − L(xn) = p(xn). We can also view the interval as a

cumulative distribution F (xn) =
∑

p(yn) where yn are all the sequences that have a binary representation
smaller than xn (

∑
yi2
−i ≤

∑
xi2
−i). Using this definition, we can rewrite the interval as [L(xn), R(xn)) =

[F (xn)− p(xn), F (xn)).

Now that we have the interval, to encode we must spit out some z inside the interval. z ∈ [L(xn), R(xn)); z =
0.z1z2z3 We can pick any z in the interval we want, but our choice can affect propreties of the code.

9-1

9-2 Lecture 9: Arithmetic Coding and Universal Codes

9.2.1 Examples

See Figure 9.1. The numbers on the diagram are in binary. We’ll be dealing with a four symbol alphabet:
{a, b, c, d}. In both examples, we’ll encode the string “aab”.

a b c d

a b c d

a b

0.1 0.11 0.111

0.01

0.001

0.0011

ab cd

ab cd

ab

0.001 0.011 0.111

0.1001 0.1101

0.10011
0.10101

Figure 9.1: Two examples for arithmetic coding of sequence “aab” for the same iid source.

9.2.1.1 Natural example

Suppose we have an iid source that is described by symbol probabilities p(a) = 1
2 , p(b) = 1

4 , p(c) = 1
8 , and

p(d) = 1
8 . When we process the first “a”, we see that the interval of the final string must be inside the

interval [0, 0.1). At this point, we could emit a 0 as the first bit as all strings that start with “a” must lie
in the first interval and have first bit 0. In general we can’t always emit early (as can be seen in the next
example). The next “a” is in [0, 0.01). Again, the encoder can send out a 0 as all strings starting in “aa”
must lie in the corresponding interval and have second bit 0. Finally, the “b” is in [0.001, 0.0011). We could
return any number in this interval to encode “aab”, e.g. the total codeword for “aab” could be 001 or 0010
or 001011 etc. Also, notice that in this case the decoder can decode bits as they are sent - first 0 maps to
an ‘a” and so on. In the next example, we see that this is not always possible.

9.2.1.2 Out of order example

Now let’s keep the probabilities the same (the same iid source), but put them in a different order. We’ll
divide the interval into d, b, a, c instead of a, b, c, d. The final intervals are different, as illustrated in the
figure.

Notice that after observing the first “a”, the encoder cannot yet transmit a bit as any string that begins
with “a” lies in the corresponding interval [0.011, 0.111) and can have its first bit as 0 or 1. This s because in
this second example the bits in the final number don’t necessarily correspond to the different subintervals.
This is in constrast to Huffman codes where each bit in the encoded symbols represent a branch in the tree.

Lecture 9: Arithmetic Coding and Universal Codes 9-3

However, arithmetic codes can accomdate for context-sensitive distributions e.g. instead of an iid source,
any other conditional distribution of second symbol given the first can be used in the second stage.

While spitting out bits as soon as the current intervals lower and upper ends agree in some bits is efficient,
the resulting codeword may not correspond to a prefix code, so the decoder may not know when to stop
(when the block length n ends). There is a more principled way to pick z such that the resulting code is
prefix free as described next.

9.2.2 Shannon-Fano-Elias Encoding: picking z

We can pick z so that the resulting code is prefix free. Once we find the interval [L(xn), R(xn)), we can

simply take the decimal part of the midpoint: L(xn)+R(xn)
2 = F̄ (xn).

The midpoint could have a very long expansion, so we are going to round it off after m̃ bits.

We know that the midpoint is: L(xn)+R(xn)
2 = F̄ (xn) = 0.z1z2 . . . zm̃ We define our rounding as F̃ (xn) =

0.z1z2 . . . zm̃ where m̃ = d− log p(xn)e+ 1. By the way we set m̃, we have F̄ (xn)− F̃ (xn) < 2−m̃ ≤ p(xn)
2 =

F̄ (xn)− L(xn). This implies L(xn) < F̃ (xn) ≤ F̄ (xn) < R(xn), which means that F̃ is in the interval.

Theorem 9.1 Shannon-Fano-Elias encoding is prefix-free.

Proof: Our code is a prefix code if and only if no other sequence of length n can have F̃ (xn) as the prefix
of its binary encoding.

We can write any number with prefix F̃ (xn) =
∑m̃

i zi2
−i, say w, as w =

∑m̃
i zi2

−i +
∑∞

i=m̃+1 zi2
−i. The

series
∑∞

i=m̃+1 zi2
−i <

∑∞
i=m̃+1 2−i = 2−m̃ (since all zis can’t be 1, otherwise the binary representation is

same as flipping the m̃ bit and in that case w won’t have as F̃ (xn) prefix). Hence, we have

w < F̃ (xn) + 2−m̃

≤ F̄ (xn) + 2−m̃

≤ F̄ (xn) +
p(xn)

2
≤ R(xn)

It is obvious that w ≥ F̃ (xn) > L(xn). Hence, w ∈ [L(xn), R(xn)). Therefore, all such ws can only represent
the sequence xn.

9.2.3 Encoding Length

Let’s find the expected length using our method of picking z. E[L(xn)] =
∑

p(xn)l(xn). The length of xn

will be m̃, which depends on xn. Using definition of m̃, E[L(xn)] ≤
∑

p(xn) log 1
p(xn) + 2 ≤ H(xn) + 2.

Thus, the expected length per symbol E[L(xn)/n] ≤ H(xn)/n + 2/n, approaches the entropy rate.

9.2.4 Comparison with Shannon and Huffman codes

Notice that while all huffman, shannon and arithmetic codes can achieve per symbol expected length close
to entropy, arithmetic codes are much more efficient as they can accomdate varying source distributions

9-4 Lecture 9: Arithmetic Coding and Universal Codes

while only requiring computation of n|X | conditional probabilities (probaility of each of the n observed
symbols given past). On the other hand, for a non-iid source, huffman and shannon codes require computing
probabilities of all length n sequences, i.e. |X |n probability values. And the computations need to be
repeated all over if the source distribution changes.

9.3 Connection between prediction accuracy to encoding

The pointwise redudancy of a code is defined as the length of the code minus the ideal code length (the
Shannon information content) per symbol where xn ∼ P : RP,C(xn) = 1

n [LC(xn)− (− logP (xn))].

The expected redundancy is the expected pointwise redundancy: EP [RP,C(xn)] = 1
n [EP [LC(xn)] −

H(xn)]. This is greater than zero if C is uniquely decodable, but could be negative otherwise.

Next, we define the concept of universal codes and show that arithmetic codes are universal codes.

9.3.1 Universal Codes

A code is weakly universal if for some given class P of processes EP [RP,C(xn)] −−−−→
n→∞

0 for each P ∈ P.

It is strongly universal if EP [RP,C(xn)] goes to zero faster than some rate r(n) for all distributions P ∈ P.

This is similar to the goal of machine learning where we are trying to model a probability distribution in
some class and we want to see how our model does compared to the best possible risk for any distribution.
Ideally, we want this difference to go to zero.

We’ll also defined the worst case expected redundancy of a code C with respect to a class of probability
distributions P as

R̄C = sup
P∈P

EP [RP,C].

The worst case max redudancy (R∗C) is defined as

R∗C = sup
P∈P

max
xn

RP,C(xn)

where, instead of expectation, we have the worst case of max redundancy over all strings.

9.3.2 Prefix codes and corresponding distribtuions

For every prefix code C, there exists a corresponding probability distribution Q such that LC(xn) ≥
− logQ(xn). Because C is a prefix code, it satisfies the Kraft inequality so we can construct Q where

Q(xn) = 2−L(xn)∑
2−L(x) .

Conversely, for any probability distribution Q, there exists a prefix code C with LC(xn) < − logQ(xn) + 1
because we can just define C to be the Shannon code corresponding to Q. This gives us a correspondence
between the probability distribution Q and the length of the codes for prefix codes.

9.3.3 Minimax Coding Redundancy and Minimax Excess Risk

Now we can talk about the minimax coding redundancy which is related to minimax excess risk in estimating
distributions from the class of distributions P.

Lecture 9: Arithmetic Coding and Universal Codes 9-5

The redundancy of any prefix code is bounded from below by the minimax risk in estimating a distribution
from class P is

R̄C ≥ min
Q

max
P∈P

1

n

∑
xn

P (xn) log
P (xn)

Q(xn)
= R̄

∑
xn P (xn) log P (xn)

Q(xn) is the KL divergence Dn(P ||Q) between P and Q evaluated on strings of length n,

which is the minimax excess risk corresponding to negative log loss (refer Lecture 1).

If we want to find the best Q, how well you can estimate any distibution from this class according to the
negative log loss will decide what your expected coding redundancy should be for the worst case. In fact,
we can talk about which Q achieves the minimax bound and we can take that distribution and design its
corresponding Shannon code and that wil get you smallest possible worst case redundancy up to 1 bit.

Thus, there is a strong connection between how well you’re estimating from a class of distributions P and
how well you’re doing your encoding.

We can do the same thing for the worst case max redundancy:

R∗C ≥ min
Q

max
P∈P

max
xn

1

n
log

P (xn)

Q(xn)
= R∗,

where we just have max instead of average.

We can talk about best distribution, either in the max or average case, but either way, if we don’t know the
best distribution, we can still make an Arithmetic code using some other Q. As long as the Q we pick is
close to the best distribuion, the code will be universal over all the distributions in P. I.e. For a class of
processes P, ∃ strongly universal codes with expected or maximum redundancy going to zero uniformly for
all P ∈ P iff R̄ = o(1) or R∗ = o(1) respectively. More next time.

