
10-704: Information Processing and Learning Spring 2012

Lecture 8: Source Coding Theorem, Huffman coding
Lecturer: Aarti Singh Scribe: Dena Asta

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

8.1 Codes

Codes are functions that convert strings over some alphabet into (typically shorter) strings over another
alphabet. We recall different types of codes and bounds on the performance of codes satisfying various
desirable properties, such as unique decodability.

8.1.1 Taxonomy of codes

Fix a random variable X having as its possible values entries of a set X . Let Σ∗ denote the set of strings
whose characters are taken from an alphabet Σ. In the case Σ has two elements, we can interpret elements
of Σ∗ as bit strings, for example. Let Y denote a set of target symbols and C denote a code, a function of
the form

Xn → Y∗.
The extension of a symbol code, a code of the form C : X → Y∗, is the function C : X ∗ → Y∗ defined by

C(x1x2 . . . xn) = C(x1)C(x2) . . . C(xn), n = 0, 1, . . . , x1, x2, . . . , xn ∈ X.

Listed below are some terms used to describe codes.

codes description of C

block C : Xn → YN fixed length (n,N fixed)
symbol C : X → Y∗ variable length

non-singular C injective loss-less compression
uniquely decodable extension X ∗ → Y∗ of a symbol

code X → Y∗ injective
prefix/instantaneous/self-punctuating no code word prefixes another:

for all distinct x′, x′′ ∈ X , C(x′)
does not start with C(x′′)

uniquely decodable

In other words, a block code translates n-length strings into N -length strings and a symbol code translates
individual characters into various strings. For a given symbol code C : X → Y∗, let x denote a source
symbol, an element of X, p(x) denote the probability P (X = x), and l(x) denote the length of the code
C(x).

Theorem 8.1 (Kraft-McMillan Inequality) For any uniquely decodable code C : X → {1, 2, . . . , D}∗,∑
x

D−l(x) ≤ 1. (8.1)

8-1

8-2 Lecture 8: Source Coding Theorem, Huffman coding

Conversely, for all sets {l(x)}x∈X of numbers satisfying (8.1), there exists a prefix code C : X → {1, 2, . . . , D}∗
such that l(x) is the length of C(x) for each x.

The idea behind the proof is to note that each uniquely decodable code (taking D possible values) corresponds
to a finite D-ary tree having the code words as some of its leaves. Thus the second sentence of the theorem
readily follows. The first sentence of the theorem follows from noting that we drew the tree so that its
branches formed π/D radian angles and we scaled the tree so that the leaves hovered over the unit interval
[0, 1], then each leaf L hovers over the sum of the reciprocal lengths of paths to leaves left of L, i.e. each leaf
maps to a disjoint subinterval of [0, 1].

Proposition 8.2 The ideal codelengths for a prefix code with smallest expected codelength are

l∗(x) = logD
1

p(x)
(Shannon information content)

Proof: In last class, we showed that for all length functions l of prefix codes, E[l∗(x)] = Hp(X) ≤ E[l(x)].

While Shannon entropies are not integer-valued and hence cannot be the lengths of code words, the integers

{dlogD
1

p(x)
e}x∈X

satisfy the Kraft-McMillan Inequality and hence there exists some uniquely decodable code C for which

Hp(x) ≤ E[l(x)] < Hp(x) + 1, x ∈ X (8.2)

by Theorem 8.1. Such a code is called Shannon code. Moreover, the lengths of code words for such a code
C achieve the entropy for X asymptotically, i.e. if Shannon codes are constructed for strings of symbols xn

where n→∞, instead of individual symbols. Assuming X1, X2, . . . form an iid process, for all n = 0, 1, . . .

H(X) =
H(X1, X2, . . . , Xn)

n

≤ E[l(x1, . . . , xn)]

n

<
H(X1, X2, . . . , Xn)

n
+

1

n
= H(X) +

1

n

by (8.2), and hence E[l(x1,...,xn)
n] −−−−→

n→∞
H(X). If X1, X2, . . . form a startionary process, then a similar

arugment shows that E[l(x1,...,xn)
n] −−−−→

n→∞
H(X), where H(X) is the entropy rate of the process.

Theorem 8.3 (Shannon Source Coding Theorem) A collection of n iid ranodm variables, each with
entropy H(X), can be compressed into nH(X) bits on average with negligible loss as n → ∞. Conversely,
no uniquely decodable code can compress them to less than nH(X) bits without loss of information.

8.1.2 Non-singular vs. Uniquely decodable codes

Can we gain anything by giving up unique decodability and only requiring the code to be non-singular?
First, the question is not really fair because we cannot decode sequence of symbols each encoded with a
non-singular code easily. Second, (as we argue below) non-singular codes only provide a small improvement
in expected codelength over entropy.

Lecture 8: Source Coding Theorem, Huffman coding 8-3

Theorem 8.4 The length of a non-singular code satisifes∑
x

D−l(x) ≤ lmax

and for any probability distribution p on X , the code has expected length

E[l(X)] =
∑
x

p(x)l(x) ≥ HD(X)− logD lmax.

Proof: Let al denote the number of unique codewords of length l. Then al ≤ Dl since no codeword can be
repeated due to non-singularity. Using this

∑
x

D−l(x) =

lmax∑
l=1

alD
−l ≤

lmax∑
l=1

DlD−l = lmax.

The expected codelength can be obtained by solving the following optimization problem:

min
∑
x

p(x)l(x) subject to
∑
x

D−lx ≤ lmax,

the convex non-singularity code constraint. Differentiating the Lagrangian
∑
x pxlx+λ

∑
xD
−lx with respect

to lx and noting that at the global minimum (λ∗, l∗x) it must be zero, we get :

px − λ∗D−l
∗
x lnD = 0

which implies that D−l
∗
x = px

λ∗ lnD .

Using complementary slackness, noting that λ∗ > 0 for the above condition to make sense, we have :∑
xD
−l∗x =

∑
x

px
λ∗ lnD = lmax which implies λ∗ = 1/(lmax lnD) and hence D−l

∗
x = pxlmax, or the optimum

length l∗x = − logD(pxlmax).

This gives the expected minimum codelength for nonsingular codes as
∑
x pxl

∗
x = −

∑
x px logD(pxlmax) =

HD(X)− logD lmax.

In last lecture, we saw an example of a non-singular code for a process which has expected length below
entropy. However, this is only true when encoding individual symbols. As a direct corollary of the above
result, if symbol strings of length n are encoded using a non-singular code, then

E[l(Xn)] ≥ H(Xn)− logD(nlmax)

Thus, the expected length per symbol can’t be much smaller than the entropy (for iid processes) or entropy
rate (for stationary processes) asymptotically even for non-singular codes, since the second term divided by
n is negligible.

Thus, non-singular codes don’t offer much improvement over uniquely decodable and prefix codes. In fact,
the following result shows that any non-singular code can be converted into a prefix code while only increasing
the codelength per symbol by an amount that is negligible asymptotically.

Lemma 8.5 For every non-singular code C such that E[lC(X)] = LNS, there exists a prefix code C ′ such
that

E[lC′(X)] = LNS +O(
√
LNS).

8-4 Lecture 8: Source Coding Theorem, Huffman coding

8.1.3 Cost of using wrong distribution

We can use relative entropy to quantify the deviation from optimality that comes from using the wrong
probability distribution q 6= p on the source symbols. Suppose l(x) = dlogD

1
q(x)e, is the Shannon code

assignment for a wrong distribution q 6= p. Then

H(p) +D(p‖q) ≤ Ep[l(X)] < H(p) +D(p‖q) + 1.

Thus D(p‖q) measures deviation from optimality in code lengths.
Proof: First, the upper bound:

Ep[l(X)] =
∑
x

p(x)l(x) =
∑
x

p(x)dlogD
1

q(x)
e

<
∑
x

p(x)

(
log

1

q(x)
+ 1

)
=
∑
x

p(x) log

(
p(x)

q(x)
· 1

p(x)

)
+ 1

= D(p||q) +H(p) + 1

The lower bound follows similarly:

Ep[l(X)] ≥
∑
x

p(x) log
1

q(x)
= D(p||q) +H(p)

8.1.4 Huffman Coding

Is there a prefix code with expected length shorter than Shannon code? The answer is yes. The optimal
(shortest expected length) prefix code for a given distribution can be constructed by a simple algorithm due
to Huffman.

We introduce an optimal symbol code, called a Huffman code, that admits a simple algorithm for its im-
plementation. We fix Y = {0, 1} and hence consider binary codes, although the procedure described here
readily adapts for more general Y. Simply, we define the Huffman code C : X → {0, 1} as the coding scheme
that builds a binary tree from leaves up - takes the two symbols having the least probabilities, assigns them
equal lengths, merges them, and then reiterates the entire process. Formally, we describe the code as follows.
Let

X = {x1, . . . , xN}, p1 = p(x1), p2 = p2(x2), . . . pN = p(xN).

The procedure Huff is defined as follows:

Huff (p1, . . . , pN):
if N > 2 then

C(1)← 0, C(2)← 1
else

sort p1 ≥ p2 ≥ . . . pN
C ′ ← Huff(p1, p2, . . . , pN−2, pN−1 + pN)
for each i

if i ≤ N − 2 then C(i)← C ′(i)
else if i = N − 1 then C(i)← C ′(N − 1) · 0
else C(i)← C ′(N − 1) · 1

return C

Lecture 8: Source Coding Theorem, Huffman coding 8-5

For example, consider the following probability distribution:

symbol a b c d e f g

pi 0.01 0.24 0.05 0.20 0.47 0.01 0.02
Huffman code 000000 01 0001 001 1 000001 00001

The Huffman tree is build using the procedure described above. The two least probable symbols at the first
iteration are ‘a’ and ‘f’, so they are merged into one new symbol ‘af’ with probability 0.01 + 0.01 = 0.02.
At the second iteration, the two least probable symbols are ‘af’ and ‘g’ which are then combined and so on.
The resulting Huffman tree is shown below.

a f g
c

d
b

e

The Huffman code for a symbol x in the alphabet {a, b, c, d, e, f, g} can now be read starting from the root
of the tree and traversing down the tree until x is reached; each leftwards movement suffixes a 0 bit and each
rightwards movement adds a trailing 1, resulting in the code shown above in the table.

Remark 1: If more than two symbols have the same probability at any iteration, then the Huffman coding
may not be unique (depending on the order in which they are merged). However, all Huffman codings on
that alphabet are optimal in the sense they will yield the same expected codelength.

Remark 2: One might think of another alternate procedure to assign small codelengths by building a tree
top-down instead, e.g. divide the symbols into two sets with almost equal probabilities and repeating.
While intuitively appealing, this procedure is suboptimal and leads to a larger expected codelength than the
Huffman encoding. You should try this on the symbol distribution described above.

Remark 3: For a D-ary encoding, the procedure is similar except D least probable symbols are merged at
each step. Since the total number of symbols may not be enough to allow D variables to be merged at each
step, we might need to add some dummy symbols with 0 probability before constructing the Huffman tree.
How many dummy symbols need to be added? Since the first iteration merges D symbols and then each
iteration combines D-1 symbols with a merged symbols, if the procedure is to last for k (some integer number
of) iterations, then the total number of source symbols needed is 1 + k(D − 1). So before beginning the
Huffma procedure, we add enough dummy symbols so that the total number of symbols look like 1+k(D−1)
for the smallest possible value of k.

Now we will show that the Huffman procedure is indeed optimal, i.e. it yields the smallest expected code-
length for any prefix code. Since there can be many optimal codes (e.g. flipping bits in a code still leads to
a code with same codelength, also exchanging source symbols with same codelength still yields an optimal
code) and Huffman coding only finds one of them, lets first characterize some properties of optimal codes.

Assume the source symbols x1, . . . , xN ∈ X are ordered so that p1 ≥ p2 ≥ · · · ≥ pN . For brevity, we write li
for l(xi) for each i = 1, . . . , N . We first observe some properties of general optimal prefix codes.

Lemma 8.6 For any distribution, an optimal prefix code exists that satisfies:

1. if pj > pk, then lj ≤ lk.

2. The two longest codewords have the same length and correspond to the two least likely symbols.

8-6 Lecture 8: Source Coding Theorem, Huffman coding

Proof: The collection of prefix codes is well-ordered under expected lengths of code words. Hence there
exists a (not necessarily unique) optimal prefix code. To see (1), suppose C is an optimal prefix code. Let
C ′ be the code interchanging C(xj) and C(xk) for some j < k (so that pj ≥ pk). Then

0 ≤ L(C ′)− L(C)

=
∑
i

pil
′
i −
∑
i

pili

= pj lk + pklj − pj lj − pklk
= (pj − pk)(lk − lj)

and hence lk − lj ≥ 0, or equivalently, lj ≤ lk.

To see (2), note that if the two longest codewords had differing lengths, a bit can be removed from the end
of the longest codeword while remaining a prefix code and hence have strictly lower expected length. An
application of (1) yields (2) since it tells us that the longest codewords correspond to the least likely symbols.

We claim that Huffman codes are optimal, at least among all prefix codes. Because our proof involves
multiple codes, we avoid ambiguity by writing L(C) for the expected length of a code word coded by C, for
each C.

Proposition 8.7 Huffman codes are optimal prefix codes.

Proof: Define a sequence {AN}N=2,...,|X | of sets of source symbols, and associated probabilities PN =
{p1, p2, . . . , pN−1, pN + pN+1 + · · ·+ p|X |}. Let CN denote a huffman encoding on the set of source symbols
AN with probabilities PN .

We induct on the size of the alphabets N .

1. For the base case N = 2, the Huffman code maps x1 and x2 to one bit each and is hence optimal.

2. Inductively assume that the Huffman code CN−1 is an optimal prefix code.

3. We will show that the Huffman code CN is also an optimal prefix code.
Notice that the code CN−1 is formed by taking the common prefix of the two longest codewords (least-
likely symbols) in {x1, . . . , xN} and allotting it to a symbol with expected length pN−1 + pN . In other
words, the Huffman tree for the merged alphabet is the merge of the Huffman tree for the original
alphabet. This is true simply by the definition of the Huffman procedure. Let li denote the length of
the codeword for symbol i in CN and let l′i denote the length of symbol i in CN−1. Then

L(CN) =

N−2∑
i=1

pili + pN−1lN−1 + pN lN

=

N−2∑
i=1

pil
′
i + (pN−1 + pN)l′N−1︸ ︷︷ ︸

L(CN−1)

+(pN−1 + pN)

the last line following from the Huffman construction. Suppose, to the contrary, that CN were not
optimal. Let C̄N be optimal (existence is guaranteed by previous Lemma). We can take C̄N−1 to be
obtained by merging the two least likely symbols which have same length by Lemma 8.6. But then

L(C̄N) = L(C̄N−1) + (pN−1 + pN) ≥ L(CN−1) + (pN−1 + pN) = L(CN)

where the inequality holds since CN−1 is optimal. Hence, CN had to be optimal.

Lecture 8: Source Coding Theorem, Huffman coding 8-7

Remarks 8.8 The numbers p1, p2, . . . , pN need not be probabilities - just weights {wi} taking arbitrary
non-negative values. Huffman encoding in this case results in a code with minimum

∑
i piwi.

Remarks 8.9 Since Huffman codes are optimal prefix codes, they satisfy H(X) ≤ E[l(X)] < H(X) + 1,
same as Shannon code. However, expected length of Huffman codes is never longer than that of a Shannon
code, even though for any given individual symbol either Shannon or Huffman code may assign a shorter
codelength.

Remarks 8.10 Huffman codes are often undesirable in practice because they cannot easily accomodate
changing source distributions. We often desire codes that can incorporate refined information on the proba-
bility distributions of strings, not just the distributions of individual source symbols (e.g. English language.)
The huffman coding tree needs to be recomputed for different source distributions (e.g. English vs French).
In next class, we will discuss arithmetic codes which address this issue.

