10-704: Information Processing and Learning

Spring 2012

Lecture 5: Burg's Maximum Entropy Theorem

Lecturer: Aarti Singh Scribe: Ina Fiterau

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Brief Review

5.1.1 Maximum Entropy Distributions under linear constraints

$$q_{ME}^* = \arg \max_{q} H(q)$$

s.t. $q \in Q_{linear} = \{q \in \mathcal{P} : E_q[r_i(X)] = \alpha_i\}$
where \mathcal{P} is the set of all distributions.

$$\begin{split} \Rightarrow q_{ME}^* &= & \exp[\lambda_{0_{ME}}^* - 1 + \sum_i \lambda_{i_{ME}}^*] \\ & \text{where } \lambda_i^* \text{ chosen s.t. } q_{ME}^* \in Q_{linear}. \end{split}$$

Normalizing to ensure $q_{ME}^* \in \mathcal{P}$,

$$q_{ME}^* = \frac{\exp[\sum_i \lambda_{i_{ME}}^* r_i(x)]}{\sum_x \exp[\sum_i \lambda_{i_{ME}}^* r_i(x)]} \Rightarrow q_{ME}^* \in \text{ exponential family}$$

More Examples:

- 1. Let's consider the multivariate maximum entropy distribution with $\mathbf{0}$ mean, $E[X_iX_j] = k_{ij}$ and unbounded support. Then $q_{ME}^* \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$ where $\mathbf{K} = \{k_{ij}\}$ is the covairance matrix.
- 2. Graphical models are a special case of exponential families, e.g. the graphical model known as the Ising model is used to model spin of electrons. The electron spin is modeled by a random variable $x_i \in \{0,1\}$, neighboring spins are anti-parallel if $x_i \neq x_j$ and parallel if $x_i = x_j$. In ferromagnetic materials, configurations in which electron spins are parallel are favored and hence the probability of a spin is given as

$$q_{\text{ISING}}^* \propto \exp \left[\sum_{ij} \lambda_{ij} (x_i x_j + (1 - x_i)(1 - x_j)) \right]$$

Notice that the probability of a spin alignment is higher if $x_i = x_j$, i.e. spins are parallel. Ising model is indeed the maximum entropy binary distribution that respects second moments between neighbors.

5.1.2 Information Projection (I-projection)

We define the *information projection* of a distribution p onto the family of distributions Q as:

$$q_{IP}^* \ = \ \arg\min_{q \in Q} D(q \,||\, p)$$

If $Q = Q_{linear}$, we can show that

$$q_{IP}^* = \frac{p(x) \exp[\sum_i \lambda_{i_{IP}}^* r_i(x)]}{\sum_x p(x) \exp[\sum_i \lambda_{i_{IP}}^* r_i(x)]},$$

i.e. it is in the exponential family with base distribution p.

If p is uniform and $Q = Q_{\text{linear}} \Rightarrow q_{IP}^* = q_{ME}^*$.

Examples of distributions from the exponential family with base distribution p:

• Poisson: $q^*(x) = \frac{1}{x!} \lambda^x e^{-\lambda}$

• Binomial: $\binom{n}{x} \theta^x (1-\theta)^{n-x}$

Reminder: The probability simplex. We're trying to find the point in Q that's closest to P.

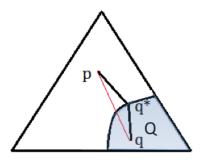


Figure 5.1: Triangle depicts the simplex of all probability distributions. The angle between segments qq^* and q^*p is necessarily obtuse if Q is convex, and is 90° if Q is linear.

5.1.3 Information Geometrically Orthogonal families

From figure 5.1.2, if we think of D(q || p) as distance squared, then Pythagora's Theorem states that, in a triangle with an obtuse angle, the square of the distance of the side opposite to the obtuse angle is greater than the sum of the squared-distance of the other two sides.

Theorem 5.1 Pythagorean theorem for Information Projection

If Q is closed and convex and $p \notin Q$, and $q^* = \underset{q \in Q}{\operatorname{argmin}} D(q || p)$ then $\forall q \in Q$

$$D(q \mid\mid p) \geq D(q \mid\mid q^*) + D(q^* \mid\mid p).$$

For what class of distributions, does the Pythagorean theorem hold with equality? Once again referring to figure 5.1.2, we expect that if the set Q corresponds to a line, then the angle between segments qq^* and q^*p is 90° and we have the pythagorean identity as follows. Also see figure 5.1.3

Theorem 5.2 Pythagorean identity for Information Projection If $Q = Q_{linear}$

$$D(q || p) = D(q || q^*) + D(q^* || p).$$

Recall that the information projection q^* for Q_{linear} belongs to the exponential family. In fact, if we sweep through the constants in the linear constraints α_{i} s, we get different linear families and the corresponding I-projections q^* are different distributions belonging to the exponential family. The same is true if we vary the base distribution p or the functions $r_i(x)$ specifying the linear constraints. Thus,

The exponential family is "information geometrically orthogonal" to the linear family.

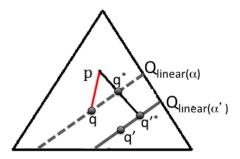


Figure 5.2: Information projections q^* and $q^{'*}$ for two linear families with different constraint parameters α and α' . All points along the line joining p to q or q' belong to the exponential family and are obtained by sweeping through different α s of the corresponding linear family. Thus, linear family and exponential family are information-geometrically orthogonal.

The notion of information projection will also be useful later when we talk about large deviation theory. Here is an example:

Example: Large deviation theory What's the probability that the average of n fair coin tosses (0,1) is greater than 3/4, i.e. more than 3n/4 tosses result in a 1? Solution: Consider the set of all distributions which have the same empirical distribution as the sequence we observe.

$$Q = \{q: q(1) \ge 3/4\}$$

Then we will show that if p = (1/2, 1/2) is the true distribution of the fair coin, then

$$Pr(Q) = Pr(x^n : \text{empirical distribution of } x^n \text{ is in } Q) \approx 2^{-n \min_{q \in Q} D(q||p)}$$

 $\approx 2^{-nD((1/4,3/4)||(1/2,1/2))}$

5.1.4 Maximum Likelihood Estimation under Exponential Families

Define the exponential family of distributions $E(r_i(x), p(x))$ as set of distributions of the form

$$q(x) \propto p(x)e^{\sum_i \lambda_i r_i(x)}$$

ML Estimation

$$q_{ML}^*(x) = \underset{q \in E(r_i(x), p(x))}{\operatorname{argmax}} \prod_{j=1}^n q(x_j)$$

$$= \underset{q \in E(r_i(x), p(x))}{\operatorname{argmin}} \mathbb{E}_{\hat{p}}[\log \frac{1}{q(x)}]$$

$$= \underset{q \in E(r_i(x), p(x))}{\operatorname{argmin}} D(\hat{p} || q)$$

From previous lecture, we have seen that q_{ML}^* has the exponential family parametrization:

$$\begin{array}{rcl} q_{ML}^*(x) & \propto & p(x)e^{\sum_i \lambda_{i_{ML}}^* r_i(x)} \\ \text{where } \lambda_{ML}^* \text{ chosen s.t.} \\ & \mathbb{E}_{q_{ML}^*}[r_i(X)] & = & \mathbb{E}_{\widehat{p}}[r_i(X)] \\ & \sum_x q_{ML}^*(x)r_i(x) & = & \frac{1}{n}\sum_{i=1}^n r_i(x_j) \quad \forall i \end{array}$$

Define $Q_{linear} = \{q : \mathbb{E}_q[r_i(X)] = \mathbb{E}_{\hat{p}}[r_i(X)]\}$ i.e. the linear constraints are given by the empirical moments of data. Then the maximum likelihood estimator is equivalent to the information projection of p onto Q_{linear} : $q_{IP}^* = \arg\min_{q \in Q_{linear}} D(q \mid p)$. Thus,

$$q_{ML_{Exp}}^* = q_{IP}^*$$
 if $Q = Q_{linear}$ and $\alpha_i = \mathbb{E}_{\hat{p}}[r_i(X)]$
= q_{ME}^* if $Q = Q_{linear}$, $\alpha_i = \mathbb{E}_{\hat{p}}[r_i(X)]$ and $p = u$, the uniform distribution.

5.2 Max Entropy Rate Stochastic processes

Entropy of random variable X: H(X)

The joint entropy of $X_1 \dots X_n$:

$$H(X_1, ..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1} ... X_1)$$

 $\leq \sum_{i=1}^n H(X_i)$ since conditioning does not increase entropy
 $= nH(X)$ if the variables are identically distributed

If the random variables are also independent, then the joint entropy of n random variables increases with n. How does the joint entropy of a sequence of n random variables with possibly arbitrary dependencies scale?

To answer this, we consider a stochastic process which is an indexed sequence of random variables with possibly arbitrary dependencies. We define

Entropy rate of a stochastic process $\{X_i\} =: \mathcal{X}$ as

$$H(\mathcal{X}) := \lim_{n \to \infty} \frac{H(X_1, \dots, X_n)}{n}$$

i.e. the limit of the per symbol entropy, if it exists.

Stationary stochastic process: A stochastic process is stationary if the joint distribution of any subset of the sequence of random variables is invariant with respect to shifts:

$$p(X_1, \dots, X_n) = p(X_{1+l}, \dots, X_{n+l}) \quad \forall l, \ \forall n$$

Theorem 5.3 For a stationary stochastic process, the following limit always exists

$$H(\mathcal{X}) := \lim_{n \to \infty} \frac{H(X_1, \dots, X_n)}{n}$$

i.e. limit of per symbol entropy, and and is equal to

$$H'(\mathcal{X}) := \lim_{n \to \infty} H(X_n | X_{n-1}, \dots, X_1)$$

i.e. the limit of the conditional entropy of last random variable given past.

For stationary first order Markov processes:

$$H(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_{n-1}) = H(X_2 | X_1)$$

Theorem 5.4 Burg's Maximum Entropy Theorem

The max entropy rate stochastic process $\{X_i\}$ satisfying the constraints

$$E[X_i X_{i+k}] = \alpha_k \quad for \ k = 0, 1 \dots p \quad \forall i \quad (\star)$$

is the Gauss-Markov process of the p^{th} order, having the form:

$$X_{i} = -\sum_{i=1}^{p} a_{k} X_{i-k} + Z_{i} \qquad Z_{i} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^{2})$$

where a_k and σ^2 are parameters chosen such that constraints \star are satisfied.

Note: The process $\{X_i\}$ is NOT assumed to be (1) zero-mean, (2) Gaussian or (3) stationary.

Note: The theorem states that AR(p) auto-regressive Gauss-Markov process of order p arise as natural solutions when finding maximum entropy stochastic processes under second-order moment constraints up to lag p.

Proof: Let $X_1 ... X_n$ be a stochastic process that satisfies constraints \star . Let $Z_1 ... Z_n$ be a Gaussian process that satisfies constraints \star .

Let $Z_1' \dots Z_n'$ be a p^{th} order Gauss-Markov process with the same some distribution as $Z_1 \dots Z_n$ for all orders up to p. (Existence of such a process will be established after the proof.)

Since the multivariate normal distribution maximizes entropy over all vector-valued random variables under

a covariance constraint, we have:

$$H(X_{1},...,X_{n}) \leq H(Z_{1},...,Z_{n})$$

$$= H(Z_{1},...,Z_{p}) + \sum_{i=p+1}^{n} H(Z_{i}|Z_{i-1},...,Z_{1}) \text{ (chain rule)}$$

$$\leq H(Z_{1},...,Z_{p}) + \sum_{i=p+1}^{n} H(Z_{i}|Z_{i-1},...,Z_{i-p}) \text{ (conditioning does not increase entropy)}$$

$$= H(Z'_{1},...,Z'_{p}) + \sum_{i=p+1}^{n} H(Z'_{i}|Z'_{i-1},...,Z'_{i-p})$$

$$= H(Z'_{1},...,Z'_{n})$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} H(X_{1}...X_{n}) \leq \lim_{n \to \infty} \frac{1}{n} H(Z'_{1}...Z'_{n})$$

Existence: Does a p^{th} order Gaussian Markov process exists s.t. $(a_1 \dots a_p, \sigma^2)$ satisfy \star ?

$$X_{i}X_{i-l} = -\sum_{k=1}^{p} a_{k}X_{i-k}X_{i-l} + Z_{i}X_{i-l}$$

$$E[X_{i}X_{i-l}] = -\sum_{k=1}^{p} a_{k}E[X_{i-k}X_{i-l}] + E[Z_{i}X_{i-l}]$$

Let $R(l) = E[X_i X_{i-l}] = E[X_{i-l} X_i] = \alpha_l$ be the given p+1 constraints. Then we obtain The Yule-Walker equations - p+1 equations in p+1 variables $(a_1 \dots a_p, \sigma^2)$:

for
$$l=0$$

$$R(0) = -\sum_{k=1}^{p} a_k R(-k) + \sigma^2$$
 for $l>0$
$$R(l) = -\sum_{k=1}^{p} a_k R(l-k) \quad \text{(since } Z_i \perp X_{i-l} \text{ for } l>0.\text{)}$$

The solution to the Yule-Walker equations will determine the p^{th} order Gaussian Markov process.