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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

5.1 Brief Review

5.1.1 Maximum Entropy Distributions under linear constraints

q∗ME = arg max
q
H(q)

s.t. q ∈ Qlinear = {q ∈ P : Eq[ri(X)] = αi}
where P is the set of all distributions.

⇒ q∗ME = exp[λ∗0ME
− 1 +

∑
i

λ∗iME
]

where λ∗i chosen s.t. q∗ME ∈ Qlinear.

Normalizing to ensure q∗ME ∈ P,

q∗ME =
exp[

∑
iλ
∗
iME

ri(x)]∑
x exp[

∑
iλ
∗
iME

ri(x)]
⇒ q∗ME ∈ exponential family

More Examples:

1. Let’s consider the multivariate maximum entropy distribution with 0 mean, E[XiXj ] = kij and un-
bounded support. Then q∗ME ∼ N (0,K) where K = {kij} is the covairance matrix.

2. Graphical models are a special case of exponential families, e.g. the graphical model known as the
Ising model is used to model spin of electrons. The electron spin is modeled by a random variable
xi ∈ {0, 1}, neighboring spins are anti-parallel if xi 6= xj and parallel if xi = xj . In ferromagnetic
materials, configurations in which electron spins are parallel are favored and hence the probability of
a spin is given as

q∗ISING ∝ exp

∑
ij

λij(xixj + (1− xi)(1− xj))


Notice that the probability of a spin alignment is higher if xi = xj , i.e. spins are parallel. Ising model
is indeed the maximum entropy binary distribution that respects second moments between neighbors.
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5.1.2 Information Projection (I-projection)

We define the information projection of a distribution p onto the family of distributions Q as:

q∗IP = arg min
q∈Q

D(q || p)

If Q = Qlinear, we can show that

q∗IP =
p(x) exp[

∑
i λ
∗
iIP
ri(x)]∑

x p(x) exp[
∑
i λ
∗
iIP
ri(x)]

,

i.e. it is in the exponential family with base distribution p.

If p is uniform and Q = Qlinear ⇒ q∗IP = q∗ME .

Examples of distributions from the exponential family with base distribution p:

• Poisson: q∗(x) =
1

x!
λxe−λ

• Binomial:

(
n

x

)
θx(1− θ)n−x

Reminder: The probability simplex. We’re trying to find the point in Q that’s closest to P .

Figure 5.1: Triangle depicts the simplex of all probability distributions. The angle between segments qq∗

and q∗p is necessarily obtuse if Q is convex, and is 90◦ if Q is linear.

5.1.3 Information Geometrically Orthogonal families

From figure 5.1.2, if we think of D(q || p) as distance squared, then Pythagora’s Theorem states that, in a
triangle with an obtuse angle, the square of the distance of the side opposite to the obtuse angle is greater
than the sum of the squared-distance of the other two sides.

Theorem 5.1 Pythagorean theorem for Information Projection
If Q is closed and convex and p 6∈ Q, and q∗ = argmin

q∈Q
D(q || p) then ∀q ∈ Q

D(q || p) ≥ D(q || q∗) +D(q∗ || p).
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For what class of distributions, does the Pythagorean theorem hold with equality? Once again refering to
figure 5.1.2, we expect that if the set Q corresponds to a line, then the angle between segments qq∗ and q∗p
is 90◦ and we have the pythagorean identity as follows. Also see figure 5.1.3

Theorem 5.2 Pythagorean identity for Information Projection
If Q = Qlinear

D(q || p) = D(q || q∗) +D(q∗ || p).

Recall that the information projection q∗ for Qlinear belongs to the exponential family. In fact, if we sweep
through the constants in the linear constraints αis, we get different linear families and the corresponding
I-projections q∗ are different distributions belonging to the exponential family. The same is true if we vary
the base distribution p or the functions ri(x) specifying the linear constraints. Thus,

The exponential family is “information geometrically orthogonal” to the linear family.

Figure 5.2: Information projections q∗ and q
′∗ for two linear families with different constraint parameters α

and α′. All points along the line joining p to q or q′ belong to the exponential family and are obtained by
sweeping through different αs of the corresponding linear family. Thus, linear family and exponential family
are information-geometrically orthogonal.

The notion of information projection will also be useful later when we talk about large deviation theory.
Here is an example:

Example: Large deviation theory What’s the probability that the average of n fair coin tosses (0,1) is
greater than 3/4, i.e. more than 3n/4 tosses result in a 1? Solution: Consider the set of all distributions
which have the same empirical distribution as the sequence we observe.

Q = {q : q(1) ≥ 3/4}

Then we will show that if p = (1/2, 1/2) is the true distribution of the fair coin, then

Pr(Q) = Pr(xn : empirical distribution of xn is in Q) ≈ 2−nminq∈QD(q||p)

≈ 2−nD((1/4,3/4)||(1/2,1/2))

5.1.4 Maximum Likelihood Estimation under Exponential Families

Define the exponential family of distributions E(ri(x), p(x)) as set of distributions of the form

q(x) ∝ p(x)e
∑

i λiri(x)
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ML Estimation
q∗ML(x) = argmax

q∈E(ri(x), p(x))

n∏
j=1

q(xj)

= argmin
q∈E(ri(x), p(x))

Ep̂[log
1

q(x)
]

= argmin
q∈E(ri(x), p(x))

D(p̂ || q)

From previous lecture, we have seen that q∗ML has the exponential family parametrization:

q∗ML(x) ∝ p(x)e
∑

i λ
∗
iML

ri(x)

where λ∗ML chosen s.t.

Eq∗ML
[ri(X)] = Ep̂[ri(X)]∑

x

q∗ML(x)ri(x) =
1

n

n∑
j=1

ri(xj) ∀i

Define Qlinear = {q : Eq[ri(X)] = Ep̂[ri(X)]} i.e. the linear constraints are given by the empirical moments
of data. Then the maximum likelihood estimator is equivalent to the information projection of p onto Qlinear:
q∗IP = arg minq∈Qlinear

D(q || p). Thus,

q∗MLExp
= q∗IP if Q = Qlinear and αi = Ep̂[ri(X)]

= q∗ME if Q = Qlinear, αi = Ep̂[ri(X)] and p = u, the uniform distribution.

5.2 Max Entropy Rate Stochastic processes

Entropy of random variable X : H(X)

The joint entropy of X1 . . . Xn:

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|Xi−1 . . . X1)

≤
n∑
i=1

H(Xi) since conditioning does not increase entropy

= nH(X) if the variables are identically distributed

If the random variables are also independent, then the joint entropy of n random variables increases with n.
How does the joint entropy of a sequence of n random variables with possibly arbitrary dependencies scale?

To answer this, we consider a stochastic process which is an indexed sequence of random variables with
possibly arbitrary dependencies. We define

Entropy rate of a stochastic process {Xi} =: X as

H(X ) := lim
n→∞

H(X1, . . . , Xn)

n

i.e. the limit of the per symbol entropy, if it exists.
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Stationary stochastic process: A stochastic process is stationary if the joint distribution of any subset of the
sequence of random variables is invariant with respect to shifts:

p(X1, . . . , Xn) = p(X1+l, . . . , Xn+l) ∀l, ∀n

Theorem 5.3 For a stationary stochastic process, the following limit always exists

H(X ) := lim
n→∞

H(X1, . . . , Xn)

n

i.e. limit of per symbol entropy, and and is equal to

H ′(X ) := lim
n→∞

H(Xn|Xn−1, . . . , X1)

i.e. the limit of the conditional entropy of last random variable given past.

For stationary first order Markov processes:

H(X ) = lim
n→∞

H(Xn|Xn−1) = H(X2|X1)

Theorem 5.4 Burg’s Maximum Entropy Theorem
The max entropy rate stochastic process {Xi} satisfying the constraints

E[XiXi+k] = αk for k = 0, 1 . . . p ∀i (?)

is the Gauss-Markov process of the pth order, having the form:

Xi = −
p∑
i=1

akXi−k + Zi Zi
iid∼ N (0, σ2)

where ak and σ2 are parameters chosen such that constraints ? are satisfied.

Note: The process {Xi} is NOT assumed to be (1) zero-mean, (2) Gaussian or (3) stationary.
Note: The theorem states that AR(p) auto-regressive Gauss-Markov process of order p arise as natural
solutions when finding maximum entropy stochastic processes under second-order moment constraints up to
lag p.

Proof: Let X1 . . . Xn be a stochastic process that satisfies constraints ?. Let Z1 . . . Zn be a Gaussian process
that satisfies constraints ?.

Let Z ′1 . . . Z
′
n be a pth order Gauss-Markov process with the same some distribution as Z1 . . . Zn for all orders

up to p. (Existence of such a process will be established after the proof.)

Since the multivariate normal distribution maximizes entropy over all vector-valued random variables under
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a covariance constraint, we have:

H(X1, . . . , Xn) ≤ H(Z1, . . . , Zn)

= H(Z1, . . . , Zp) +

n∑
i=p+1

H(Zi|Zi−1, . . . , Z1) (chain rule)

≤ H(Z1, . . . , Zp) +

n∑
i=p+1

H(Zi|Zi−1, . . . , Zi−p) (conditioning does not increase entropy)

= H(Z ′1, . . . , Z
′
p) +

n∑
i=p+1

H(Z ′i|Z ′i−1, . . . , Z ′i−p)

= H(Z ′1, . . . , Z
′
n)

⇒ lim
n→∞

1

n
H(X1 . . . Xn) ≤ lim

n→∞

1

n
H(Z ′1 . . . Z

′
n)

Existence: Does a pth order Gaussian Markov process exists s.t. (a1 . . . ap, σ
2) satisfy ??

XiXi−l = −
p∑
k=1

akXi−kXi−l + ZiXi−l

E[XiXi−l] = −
p∑
k=1

akE[Xi−kXi−l] + E[ZiXi−l]

Let R(l) = E[XiXi−l] = E[Xi−lXi] = αl be the given p + 1 constraints. Then we obtain The Yule-Walker
equations - p+1 equations in p+1 variables (a1 . . . ap, σ

2):

for l = 0 R(0) = −
p∑
k=1

akR(−k) + σ2

for l > 0 R(l) = −
p∑
k=1

akR(l − k) (since Zi ⊥ Xi−l for l > 0.)

The solution to the Yule-Walker equations will determine the pth order Gaussian Markov process.


