
10-704: Information Processing and Learning Spring 2012

Lecture 4: Maximum Entropy Distributions and Exponential Family
Lecturer: Aarti Singh Scribes: Min Xu
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4.1 Optimizing for Maximum Entropy Distributions

The following optimization solves for a maximum entropy distribution that satisfies linear constraints (typ-
ically moment constraints):

min
f
−H(f) (4.1)

s.t. f(x) ≥ 0 (4.2)∫
f(x)dx = 1 (4.3)∫
f(x)ri(x)dx = αi for i = 1, ..., n (4.4)∫
f(x)si(x)dx ≤ βi for i = 1, ...,m (4.5)

First, we will derive the form of the maximum entropy distribution subject to these constraints using a
crude argument. Then we will present a formal proof that the derived form indeed is the maximum entropy
distribution subject to given constraints.

Notice that the Lagragian is

L(f, λ) = −H(f) + λ0

∫
f(x)dx+

n∑
i=1

λi

∫
f(x)ri(x)dx+

n+m∑
i=n+1

λi

∫
f(x)si(x)dx (4.6)

where λn+1, ..., λn+m ≥ 0.

For the rest of the derivation, we will use the crude argument that we can think of a function f as an
infinite-dimensional continuous vector with f(x) as the value at each coordinate. Under this simplification,∫
f(x)dx is similar to

∑
x fx.

We can take derivative of L(f, λ) with respect to f(x) ≡ fx treating f is a vector and all integrals as just
summations.

∂L(f, λ)

∂f(x)
=
f(x)

f(x)
+ log f(x) + λ0 +

n∑
i=1

λiri(x) +

n+m∑
i=n+1

λisi(x)

Setting ∂L(f,λ)
∂f(x) = 0 for all x, we get that

f∗(x) = exp

[
−1− λ∗0 −

n∑
i=1

λ∗i ri(x)−
n+m∑
i=n+1

λ∗i si(x)

]
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where the {λ∗}’s are chosen such that f∗(x) satisfies the constraints. If the constraints cannot be satisifed
for any values of λ∗’s, then the maximum entropy distribution does not exist.

Now we formally prove that f∗, as derived above, is indeed the maximum entropy distribution.

Theorem 4.1 For all distributions f that satisfy the constraints, we have

H(f∗) ≥ H(f)

Proof:

H(f) = −
∫
f log f

f∗

f∗

= −D(f || f∗)−
∫
f log f∗

≤ −
∫
f log f∗ (holds with inequality when f = f∗)

= −
∫
f

(
−1− λ∗0 −

n∑
i=1

λ∗i ri(x)−
n+m∑
i=n+1

λ∗i si(x)

)

≤ 1 + λ∗0 +

n∑
i=1

λ∗iαi +

n+m∑
i=n+1

λ∗i βi (since f satisfies the constrainst and λ∗n+1, . . . , λ
∗
n+m ≥ 0)

= −
∫
f∗

(
−1− λ∗0 −

n∑
i=1

λ∗i ri(x)−
n+m∑
i=n+1

λ∗i si(x)

)

(since, by complementary slackness, λ∗i

(∫
f∗si(x)− βi

)
= 0 for i = n+ 1, . . . , n+m.)

= −
∫
f∗ log f∗ = H(f∗)

Thus, distirbutions belonging to the exponential family arise as natural solutions to the maximum entropy
problem subject to linear constraints. This provides a justification for the use of exponential family models.

4.2 Examples of Exponential Family

• N(µ, σ2)

f∗(x) = 1√
2πσ2

exp{− (x−µ)2
2σ2 }

• Exp(λ)

f∗(x) = λ exp(−λx) where x ≥ 0

• Ber(θ)

f∗(x) = θx(1− θ)1−x = exp{x log θ
1−θ + log(1− θ)}
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Several other parametric distributions that are used commonly for modeling belong to the exponential
family, and arise as solutions to the maximum entropy problem under different linear moment constraints
and support sets. We give some examples below.

Example:
In a lot of cases, it is possible that the maximum entropy distribution does not exist. For example, suppose
the only constraint is E[X] =

∫
f(x)xdx = µ. We must choose λ0 and λ1 such that∫ ∞

−∞
eλ0+λ1xdx = 1

eλ0
eλ1x

λ1
|∞−∞ = 1

For all possible values of λ1, the above equation does not hold.

Example:
If we take the above case and add a support restriction, then the maximum entropy distribution does exist.
Suppose that we have two constraints: (1)

∫
f(x)I[0,∞)(x)dx = 1 and (2) E[X] =

∫
f(x)xdx = µ

In this case, we must find λ0 and λ1 such that∫ ∞
0

eλ0+λ1x = 1

eλ0
eλ1x

λ1
|∞0 = 1

From above, we see that λ1 = −eλ0

We now use the second constraint:∫ ∞
0

xeλ0+λ1xdx = −λ1
∫ ∞
0

xeλ1xdx = µ

Using integration by parts, we set v = x, du = eλ1x and get that

µ = −λ1
[
eλ1x

λ1
x

∣∣∣∣∞
0

−
∫ ∞
0

1

λ1
eλ1xdx

]
Solving, we get λ1 = − 1

µ . Thus, the maximum entropy distribution with mean µ that is supported on the

non-negative reals is the exponential distribution f∗(x) = 1
µe
−x/µ.

Example:
Suppose the support is (−∞,∞) and we impose two constraints: E[X] = µ and E[X2 − µ2] = σ2, then
the maximum entropy distribution is a Gaussian with mean µ and variance σ2. You will prove this in the
Homework.

4.3 Information Projection

First, we will show that maximizing the entropy over a set of linearly constrained distributions, is equivalent
to minimizing the relative entropy with respect to the uniform distribution supported on the largest support
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of any distribution in the set (if it exists). Let Qlinear be the set of all distributions that satisfy the linear
constraints and let u be the dominating uniform distribution as described above.

q∗ = arg max
q∈Qlinear

H(q)

= arg min
q∈Qlinear

−H(q)− Eq[log u]

= arg min
q∈Qlinear

D(q ||u)

Definition 4.2 More generally, we define information projection of a distribution p onto a set of dis-
tributions Q as

q∗ = arg min
q∈Q

D(q || p)

If all distributions inQ have bounded support, p is the dominating uniform distirbution andQ = Qlinear, then
the information projection is the maximum entropy distribution in Q. If p is not uniform and Q = Qlinear,
the information projection has the form:

q∗(x) = p(x) exp

[
1− λ∗0 −

n∑
i=1

λ∗i ri(x)−
n+m∑
i=n+1

λ∗i si(x)

]
You will show this in the Homework.

Information projection have a nice geometric interpretation captured by the following pythagoras theorem:

Theorem 4.3 (Pythagoras Theorem for Information Projection)
Suppose Q is closed and convex and suppose p /∈ Q. Let q∗ = minq∈QD(q || p), then we have

D(q || p) ≥ D(q || q∗) +D(q∗ || p)

See figure 4.3 for an intuitive graphical explanation of the Pythagora’s theorem. This implies that information
divergence behaves as the square of euclidean distance since if the angle between two vectors AB and BC is
obtuse, then d2AC ≥ d2AB + d2BC . (Recall, however, that information divergence is not symmetric.)

Figure 4.1: Triangle depicts the simplex of all probability distributions. The angle between segments qq∗

and q∗p is necessarily obtuse if Q is convex. If we think of D(q || p) as distance squared, then Pythagora’s
Theorem states that, in a triangle with an obtuse angle, the square of the distance of the side opposite to
the obtuse angle is greater than the sum of the squared-distance of the other two sides.

Note: If the family of distributions Q is linear, that is, if q1, q2 ∈ Q implies that mixtures of q1, q2 must be in
Q as well, then set Q in this case corresponds to a straight line and the corresponding angle is a right angle.
In this case, Pythagora’s theorem for information projection holds with equality, and q∗ is the exponential
family with base distribution p. We will discuss this more in next class.
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4.4 Maximum Likelihood Estimation in Exponential Family

We first define the exponential family distributions more formally:

Definition 4.4 Let {ri(x)}i=1,...,m be a collection of statistics. Let p(x) be a distribution. We say that a
distribution q(x) is in the exponential family of (r, p), denoted q ∈ E(r,p), if

q(x) ∝ p(x) exp{λ0 +

m∑
i=1

λiri(x)}

where λ0, ...., λm are real numbers that parametrize the exponential family E(r,p).

Given i.i.d. data X1, ..., Xn, the maximum likelihood problem for the exponential family is the following:

q∗∗ = arg max
q∈E(r,p)

n∏
i=1

q(Xi)

= arg min
q∈E

n∑
i=1

log
1

q(Xi)

= arg min
q∈E

Ep̂
[
log

1

q(Xi)

]
= arg min

q∈E
Riskp̂(q)

= arg min
q∈E

Riskp̂(p̂) +D(p̂ || q) from lecture 1 about negative log likelihood loss

= arg min
q∈E

D(p̂ || q)

Note that arg minq∈E D(p̂ || q) is NOT the information projection of p̂ onto E(r,p) because we have D(p̂ || q)
instead of D(q || p̂).

The following theorem relates maximum likelihood parameter estimation in exponential family to information
projection:

Theorem 4.5 Let ri(x) be a family of statistics for i = 1, ...,m. Suppose Qlinear,(r,p̂) is the set of all
distributions that satisfy Eq[ri(x)] = αi := Ep̂[ri(x)]. Let p be a fixed distribution. Then we have

q∗∗ := arg min
q∈E(r,p)

D(p̂ || q) = arg min
q∈Qlinear,(r,p̂)

D(q || p) =: q∗

The theorem states that the distribution belonging to the exponential family (with sufficient statistics ri(x)
and base distrbution p(x)) whose parameters maximize the likelihood of data, is same as the information
projection of p(x) on to a set of distributions with linear equality constraints (specified by ri(x)) that are
given by data.

Proof: Recall the form of q∗ from Section 1 and notice that we can rewrite the distribution as

q∗ = p(x)
exp

(
−
∑m
j=1 λ

∗
jrj(x)

)
Ψ(λ∗1, ..., λ

∗
m)

where Ψ(λ∗1, ..., λ
∗
m) =

∑
x p(x) exp

(
−
∑m
j=1 λ

∗
jrj(x)

)
is the normalization constant. Here λ∗j are chosen

such that q∗ ∈ Qlinear,(r,p̂), i.e.
∑
x q
∗(x)rj(x) = Ep̂[rj(X)].
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We will show that the maximum likelihood distribution q∗∗ in E(r, p) has parameters λ∗∗ that satisfy the
same constraints. The maximum likelihood parameters for E(r, p) are given by

λ∗∗1 , ..., λ
∗∗
m = arg max

λ1,...,λm

n∏
i=1

p(Xi)
exp

(∑m
j=1 λjrj(Xi)

)
Ψ(λ1, ..., λm)

= arg max
λ1,...,λm

n∑
i=1

log p(Xi) +

m∑
j=1

λjrj(Xi)− log Ψ(λ1, ..., λm)


Taking derivative with respect to λ1, ..., λm of the log likelihood function, we get that

∂

∂λj
=

n∑
i=1

rj(Xi)− n
∂

∂λj
log Ψ(λ1, ..., λm)

=

n∑
i=1

rj(Xi)−
n

Ψ(λ1, ..., λm)

∂

∂λj
Ψ(λ1, ..., λm)

=

n∑
i=1

rj(Xi)−
n

Ψ(λ1, ..., λm)

∑
x

p(x)rj(x) exp

∑
j

λjrj(x)


=

n∑
i=1

rj(Xi)− n
∑
x

[
p(x)

exp(
∑
j λjrj(x))

Ψ(λ1, ..., λm)

]
rj(x)

Since the derivative is zero for λ∗∗j , we have:

∑
x

[
p(x)

exp(
∑
j λ
∗∗
j rj(x))

Ψ(λ1, ..., λm)

]
rj(x) =

1

n

n∑
i=1

rj(Xi)

Or equivalently, ∑
x

q∗∗(x)rj(x) =
1

n

n∑
i=1

rj(Xi) = Ep̂[rj(X)]

Thus, q∗∗ is same as q∗.


