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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

3.1 Review

In last class, we covered the following topics:

• Gibbs inequality states that D(p || q) ≥ 0

• Data processing inequality states that if X → Y → Z forms a Markov Chain, then I(X,Y ) ≥
I(X,Z). It implies that if X → Z → Y is also a Markov Chain, then I(X,Y ) = I(X,Z)

• Let θ parametrize a family of distributions, let Y be the data generated, and let g(Y ) be a statistic.
Then g(Y ) is a sufficient statistic if, for all prior distributions on θ, the Markov Chain θ → g(Y )→ Y
holds, or, equivalently, if I(θ, Y ) = I(θ, g(Y )).

• Fano’s Inequality states that, if we try to predict X based on Y , then the probability of error is
lower bounded by

pe ≥ H(X |Y )−1
log |X | (weak version)

H(X |Y ) ≤ H(pe) + pe log(|X | − 1) (strong version)

Note that we use the notation H(pe) as short-hand for entropy of a Bernoulli random variable with
parameter pe.

3.2 Clarification

The notation I(X,Y, Z) is not valid, we only talk about mutual information between a pair of random
variables (or pair of sets of random variables). In previous lecture, we used I(X, (Y, Z)) to denote I(X;Y, Z),
the mutual information between X and (Y, Z). We then used the following decomposition:

I(X;Y, Z) = I(X,Y ) + I(X,Z |Y )

= I(X,Z) + I(X,Y |Z)

Note that I(X;Y, Z) 6= I(X,Y ;Z) in general and that it is very different from conditional mutual informa-
tions I(X,Y |Z).

On a second note, when using Venn-diagram to remember inequalities about information quantities, if we
have 3 or more variables, some regions of the Venn-diagram can be negative. For instance, in figure 3.2, the
central region, I(X,Y )− I(X,Y |Z), could be negative (recall that in a homework problem you showed that
I(X,Y ) can be less than I(X,Y |Z)).

3-1



3-2 Lecture 3: Fano’s, Differential Entropy, Maximum Entropy Distributions

Figure 3.1: Venn-diagram for information quantities

3.3 More on Fano’s Inequality

Note 1: Fano’s Inequality is often applied with the decomposition H(X |Y ) = H(X)− I(X,Y ) so that we
have

pe ≥
H(X)− I(X,Y )− 1

log |X |
.

Further, if X is uniform, then H(X) = log |X | and Fano’s Inequality becomes

pe ≥ 1− I(X,Y ) + 1

log |X |
.

Note 2: From Fano’s Inequality, we can conclude that there exist a estimator g(Y ) of X with pe = 0 if
and only if H(X |Y ) = 0. If H(X |Y ) = 0, then X is a deterministic function of Y , that is, there exist a
deterministic function g such that g(Y ) = X. Therefore, pe = 0 for that estimator. If pe = 0, then the
strong version of Fano’s Inequality implies that H(X |Y ) = 0 as well.

3.3.1 Fano’s Inequality is Sharp

We will show that there exist random variables X,Y for which Fano’s Inequality is sharp. Let X = {1, ...,m},
let pi denote p(X = i). Assume that p1 ≥ p2, ..., pm and that Y = ∅.

Under this setting, it can be shown that the optimal estimate is X̂ = 1 and the error of probability pe = 1−p1.

Because Y = ∅, Fano’s inequality becomes H(X) ≤ H(E) + pe log(m− 1).

If we set X with the distribution {1− pe, pe
m−1 , ...,

pe
m−1}, then we have

H(X) =

m∑
i=1

pi log
1

pi

= (1− pe) log
1

1− pe
+

m∑
i=2

pe
m− 1

log
m− 1

pe

= (1− pe) log
1

1− pe
+ pe log

1

pe
+ pe log(m− 1)

= H(pe) + pe log(m− 1)

Thus we see that Fano’s inequality is tight under this setting.
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3.4 Differential Entropy

Definition 3.1 Let X be a continuous random variable. Then the differential entropy of X is defined
as:

H(X) = −
∫
f(x) log f(x)dx

Differential entropy is usually defined in terms of natural log, log ≡ ln, and is measured in nats.

Example:
For X ∼ Unif [0, a):

H(X) = −
∫ a

0

1

a
log

1

a
dx = − log

1

a
= log a

In particular, note that differential entropy can be negative.

Example:

Let X ∼ N(0, σ2). Let φ(x) = 1√
2πσ2

exp{− 1
2
x2

σ2 } denote the pdf of a zero-mean Gaussian random variable,

then

H(X) = −
∫ ∞
−∞

φ(x) log φ(x)dx

= −
∫ ∞
−∞

φ(x){− x2

2σ2
− log

√
2πσ2}dx

=
1

2
+ log

√
2πσ2

=
1

2
ln(2πeσ2)

Definition 3.2 We can similarly define relative entropy for a continuous random variable as

D(f1 || f2) =

∫
f1(x) ln

f1(x)

f2(x)
dx

Example:
Let f1 be density of N(0, σ2) and let f2 be density of N(µ, σ2).

D(f1 || f2) =

∫
f1 ln f1 −

∫
f1 ln f2

= −1

2
ln 2πeσ2 −

∫
f1(x){− (x− µ)2

2σ2
− ln

√
2πσ2}dx

= −1

2
ln 2πeσ2 + Ef1

(x− µ)2

2σ2
+

1

2
ln 2πσ

= −1

2
+ Ef1

(x2 − 2xµ+ µ2)

2σ2

= −1

2
+

[
σ2 + µ2

2σ2

]
=

µ2

2σ2
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3.5 Maximum Entropy Distributions

We will now derive the maximum entropy distributions under moment constraints. Here is a preview; the
next lecture will greatly elaborate on this section.

To solve for the maximum entropy distribution subject to linear moment constraints, we need to solve the
following optimization program:

max
f

H(f) (3.1)

s.t. f(x) ≥ 0 (3.2)∫
f(x)dx = 1 (3.3)∫
f(x)si(x)dx = αi for all i = 1, ..., n (3.4)

For example, if s1(x) = x and s2(x) = x2, then optimization 3.1 yields the maximum entropy distribution
with mean α1 and second moment α2.

To solve Optimization 3.1, we form the Lagrangian:

L(λ, f) = H(f) + λ0

∫
f +

n∑
i=1

λi

∫
fsi(x)

We note that taking “derivative” of L(λ, f) with respect to f gives:

∂

∂f
L(λ, f) =

[
− ln f − 1 + λ0 +

n∑
i=1

λisi(x)

]

Setting the derivative equal to 0 and we get that the optimal f is of the form

f∗(x) = exp

(
−1 + λ∗0 +

n∑
i=1

λ∗i si(x)

)

where λ∗ is chosen so that f∗(x) satisfies the constraints. Thus, the maximum entropy distribution subject
to moment constraints belongs to the exponential family. In next lecture, we will see that the same is true
with inequality constraints (i.e. bounds on the moments).


