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22.1 Recap

In last lecture, we discussed Sanov’s theorem which provides a general bound on large deviations, i.e. prob-
ability of atypical sequences under the true distribution.

Theorem 22.1 (Sanov’s Theorem) Let X1, . . . , Xn
iid∼ Q. Let E ⊆ P be a set of probability distributions.

Then
Qn(E) =

∑
xn:Pxn∈E∩Pn

Qn(xn) ≤ (n+ 1)|X | 2−nD(P∗||Q)

where P ∗ = arg minP∈E D(P ||Q).
If, in addition, set E is the closure of its interior, then

1

n
logQn(E)→ −D(P ∗||Q).

Remark 1: The theorem says that the probability of set E under a distribution Q is the same as the
probability of the type P ∗ in E that is closest to Q (in terms of KL distance) up to first order in exponent.

Remark 2: The polynomial term in the bound can be dropped if E is a convex set of distributions.

Some specific examples of application of Sanov’s theorem are as follows:

1. Suppose X1, . . . , Xn
iid∼ Bernoulli(1/3) = Q and we want to find the probability that 1

n

∑n
i=1Xi ≥ 3/4.

Qn({xn :
∑

a∈{0,1}

aPxn(a) ≥ 3/4}) = Qn(E = {P : P (1) ≥ 3/4}) ≤ (n+ 1)|X | 2−nD(P∗||Q)

where P ∗ = arg minP∈E D(P ||Q) = arg minP :P (1)≥3/4D(P ||Q) = (1/4, 3/4) since type (1/4, 3/4) in E
is closest to the true distribution Q = (2/3, 1/3). Thus,

Qn(E) ≈ 2−nD((1/4,3/4) || (2/3,1/3))

asymptotically.

2. Let Q(X,Y ) be some joint distribution. Suppose (Xn, Y n) = (X1, Y1), . . . , (Xn, Yn)
iid∼ Q0(X,Y ) =

Q(X)Q(Y ), where Q(X) and Q(Y ) are the marginal distributions corresponding to the joint distribu-
tion Q(X,Y ). In other words, Xi and Yi are independent. We are interested in the probability that
(Xn, Y n) appear to be depdendent or jointly distributed according to Q(X,Y ). In last lecture, we saw
that using Sanov’s theorem we get:

Qn0 (E) ≈ 2−nD(Q(X,Y )||Q(X)Q(Y )) = 2−nI(X,Y )
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Notice that this example essentially corresponds to an independence test where

H0 : X ⊥ Y

H1 : X 6⊥ Y

and Sanov’s theorem tells us that the probability of false alarm (type I error) asymptotically scales as
2−nI(X,Y ) for this test. Independence tests are useful in many problems, e.g. in communication, we
used joint typicality decoding to decode the channel output to a codeword with which it was dependent.
In machine learning, independnece tests are used for feature selection, i.e. deciding whether or not to
discard a feature X based on if the label Y is dependent on it or not. (Conditional) independence tests
are used for in causal inference and learning graphical models where an edge between two nodes X,Y
is absent if they are independent conditioned on some (set of) variables Z.

Today, we will see the use of Sanov’s theorem in characterizing the error exponent of general hypothesis
testing problems. But first, we present a proof of Sanov’s theorem based on results we proved last time for
the method of types.

22.2 Proof of Sanov’s Theorem

Recall that the type class of P is the set of all sequences with type P , i.e. T (P ) = {xn : Pxn = P} and the
probability of a type class T (P ) under Q, Qn(T (P )) ≤ 2−nD(P ||Q) and Qn(T (P )) ≥ 1

(n+1)|X|
2−nD(Pn||Q).

We use these results to establish Sanov’s theorem.

Upper bound:

Qn(E) =
∑

P∈E∩Pn

Qn(T (P )) ≤
∑

P∈E∩Pn

2−nD(P ||Q) ≤
∑

P∈E∩Pn

max
P∈E∩Pn

2−nD(P ||Q)

≤
∑

P∈E∩Pn

2−nminP∈E D(P ||Q) ≤ (n+ 1)|X | 2−nD(P∗||Q)

The last step follows since the total number of types |Pn| ≤ (n+ 1)|X |. This also implies that

lim sup
1

n
logQn(E)→ −D(P ∗||Q)

Lower Bound:

If E is the closure of its interior, then it implies that E is non-empty. Also observe that ∪nPn, the set of all
types for all n, is dense in all distributions. These two facts imply that E ∩ Pn is also non-empty for large
enough n and that we can find a type Pn ∈ E ∩ Pn s.t. D(Pn||Q)→ D(P ∗||Q). Now

Qn(E) ≥ Qn(T (Pn)) ≥ 1

(n+ 1)|X |
2−nD(Pn||Q)

This implies that

lim inf
1

n
logQn(E)→ −D(P ∗||Q)

which completes the proof.
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22.3 Error Exponents in Hypothesis Testing

22.3.1 Hypothesis testing: Neyman-Pearson and Bayesian

We now use Sanov’s theorem to establish error exponents in hypothesis testing. We consider the following

binary hypothesis testing problem: Let X1, . . . , Xn
iid∼ Q.

H0 : Q = P0

H1 : Q = P1

The test is specified as a decision function g(X1, . . . , Xn) ∈ {0, 1}, which maps the sequence Xn to one of
the two hypothesis. The corresponding decision region A is given by the set of sequences that are mapped
to hypothesis H0, i.e. A = {xn : g(xn) = 0}. The test is associated with two types of error:

Probability of false alarm/type I error α = Pr(g = 1|H0) = P0(Ac)

Probability of miss/type II error β = Pr(g = 0|H1) = P1(A)

There are two approaches to hypothesis testing based on the kind of error control desired:

• Neyman-Pearson approach: Minimize the probability of miss (type II error) subject to a desired
control on the probability of false alarm (type I error): minβ s.t. α ≤ ε

• Bayesian approach: If we have some prior belief over the probabilities of the two hypotheses, then
we minimize the expected probability of error: αPr(H0) + βPr(H1)

The following lemma tells us the form of the optimal test under the Neyman-Pearson approach:

Theorem 22.2 (Neyman-Pearson Lemma) For a threshold T ≥ 0, define the decision region corre-

sponding to a likelihood ratio test A(T ) =
{
P0(x

n)
P1(xn)

> T
}

. Let α∗ = P0(Ac(T )) be the false alarm (type I

error probability) and let β∗ = P1(A(T )) be the miss (type II error probability) of this test. Let B be any other
decision region with associated false alarm and miss probabilities α and β. Then if α < α∗, then β > β∗.

Proof: First, we will show that for all sequences xn ∈ Xn,

[1A(xn)− 1B(xn)](P0(xn)− TP1(xn)) ≥ 0

where 1S denotes the indicator function of the set S, i.e. 1S(xn) = 1 if xn ∈ S and 0 if xn 6∈ S. To see this,
consider two cases: i) xn ∈ A, then first term is positive (≥ 0) and by definition of A(T ), the second term is
positive as well. ii) xn 6∈ A, then first term is negative (≤ 0) and by definition of A(T ), the second term is
negative as well. Thus, the product of the two terms is positive in both cases.

Summing over all sequences and expanding out the terms

0 ≤
∑
xn

[1A(xn)P0(xn)− 1B(xn)P0(xn)− T1A(xn)P1(xn) + T1B(xn)P1(xn)]

= P0(A(T ))− P0(B)− TP1(A(T )) + TP1(B)

= 1− α∗ − (1− α)− Tβ∗ + Tβ

= α− α∗ + T (β − β∗)
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This implies that if the first term is negative (α < α∗), then second term has to be positive (β > β∗).

Thus, the likelihood ratio test is the optimal test which achieves the best miss probability for a given
probability of false alarm. The threshold T is chosen to meet the desired probability of false alarm α.

You should convince yourself that the optimal Bayesian test is based on the ratio of aposterior probabilities
(instead of likelihoods) - maybe a HW problem

P0(xn)Pr(H0)

P1(xn)Pr(H1)
> 1 ≡ P0(xn)

P1(xn)
>
Pr(H1)

Pr(H0)

22.3.2 Information-theoretic interpretation

Lets re-write the log likelihood ratio test in terms of information theoretic quantities.

Log likelihood ratio = log
P0(xn)

P1(xn)
=

n∑
i=1

log
P0(xi)

P1(xi)

=
∑
a∈X

nPxn(a) log
P0(a)

P1(a)
=
∑
a∈X

nPxn(a) log
Pxn(a)

P1(a)
· P0(a)

Pxn(a)

= n[D(Pxn ||P1)−D(Pxn ||P0)]

Thus, the decision region corresponding to the likelihood ratio test can be written as:

A(T ) =

{
xn : D(Pxn ||P1)−D(Pxn ||P0) >

1

n
log T

}
i.e. it is the region of the probability simplex bounded by the set of types for which the difference of the KL
divergence to the distributions under the two hypotheses is a constant, i.e. the boundary is parallel to the
perpendicular bisector of the line connecting P0 and P1. See Figure 22.1.

Figure 22.1: The decision region corresponding to a likelihood ratio test is demarcated by boundary that is
parallel to the perpendicular bisector of the line joining the distributions under the two hypotheses P0 and
P1.

22.3.3 Error-exponents

Using Sanov’s theorem, we get that asymptotically the probability of false alarm (type I error)

α = P0(Ac) ≈ 2−nD(P∗0 ||P0)
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where P ∗0 = arg minP∈Ac D(P ||P0) and

β = P1(A) ≈ 2−nD(P∗1 ||P1)

where P ∗1 = arg minP∈AD(P ||P1).

Let us evaluate the form of P ∗1 (and P ∗0 ). Notice from Figure 22.1 that since the decision regions are
delineated by a line parallel to the perpendicular bisector, P ∗0 (the projection of P0 onto Ac) is same as P ∗1
(the projection of P1 onto A). So we will derive the form of one of them, say P ∗1 (you can check following
the same arguments that the form of P ∗0 is indeed the same).

To evaluate P ∗1 , consider the following constrained optimization:

min
P

D(P ||P1) s.t. P ∈ A ≡ D(P ||P1)−D(P ||P0) >
1

n
log T

Forming the Lagrangian where λ > 0 and ν are Lagrange multipliers (notice that since we require λ > 0, we
consider the constraint written with a < instead of >):

L(P, λ, ν) = D(P ||P1) + λ(D(P ||P0)−D(P ||P1)) + ν
∑

P

=
∑
xn

P (xn) log
P (xn)

P1(xn)
+ λ

∑
xn

P (xn) log
P1(xn)

P0(xn)
+ ν

∑
xn

P (xn)

Taking the derivative with respect to P (xn):

log
P (xn)

P1(xn)
+ 1 + λ log

P1(xn)

P0(xn)
+ ν

∣∣∣∣
P=P∗1

= 0

and setting it equal to 0 yields P ∗1 :

P ∗1 (xn) = e−ν−1Pλ0 (xn)P 1−λ
1 (xn) =

Pλ0 (xn)P 1−λ
1 (xn)∑

an∈Xn P
λ
0 (an)P 1−λ

1 (an)

where in the last step we substituted for ν by solving for the constraint
∑
xn P

∗
1 (xn) = 1. In the last

expression λ should be chosen to satisfy the constraint D(P ∗1 ||P1)−D(P ∗1 ||P0) = 1
n log T .

From the argument given above, P ∗1 = P ∗0 (= P ∗λ say) and the error exponents:

α ≈ 2−nD(P∗||P0)

and
β ≈ 2−nD(P∗||P1)

where

P ∗λ =
Pλ0 (xn)P 1−λ

1 (xn)∑
an∈Xn P

λ
0 (an)P 1−λ

1 (an)
.

Different choice of threshold T correspond to different λ. Observe that when λ → 1, P ∗λ → P0 and when
λ→ 0, P ∗λ → P1, thus giving us the desired tradeoff between false alarm α and miss β probabilities.

If we take a Bayesian approach, the overall probability of error P
(n)
e = αPr(H0) + βPr(H1) and define the

best achievable exponent in Bayesian probability of error,

D∗ = lim
n→∞

min
A⊆Xn

− 1

n
P (n)
e .

Using the above error exponents for false alarm (type I) and miss (type II) probabilities of error, we have:
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Theorem 22.3 (Chernoff Theorem) The best achievable exponent in Bayesian probability of error

D∗ = D(P ∗λ∗ ||P0) = D(P ∗λ∗ ||P1)

where λ∗ is chosen so that D(P ∗λ∗ ||P0) = D(P ∗λ∗ ||P1). The D∗ is commonly known as Chernoff informa-
tion.

Proof: Consider Pr(H0), P r(H1) not equal to 0 or 1.

P (n)
e ≈ Pr(H0)2−nD(P∗λ ||P0) + Pr(H1)2−nD(P∗λ ||P1) ≈ 2−nmin(D(P∗λ ||P0),D(P∗λ ||P1))

The right hand side is minimized if λ is such that D(P ∗λ ||P0) = D(P ∗λ ||P1).

Notice that D∗ doesn’t depend on prior probabilities (unless one of the prior probabiltiies is 0), and hence
the effect of the prior is washed out for large sample sizes.

If we take a Neyman-Pearson approach instead, and require the probability of false alarm to be fixed (or
converging to 0 arbitrarily slowly), what is the best error exponent for the probability of miss?

Theorem 22.4 (Chernoff-Stein’s Lemma) Assume D(P0||P1) <∞. For 0 < ε < 1/2, define

βεn = min
A⊆Xn,α<ε

β

Then

lim
ε→0

lim
n→∞

1

n
log βεn = −D(P0||P1).

Inuitively, if we allow α to be fixed, then P ∗λ = P0 (exponent does not decay) and hence β ≈ 2−nD(P0||P1),
i.e. we can achieve a faster error exponent on one type of error probability if we allow the other type of error
probability to be fixed or decay arbitrarily slowly. For a rigorous proof, see Thomas-Cover Section 11.8.

22.4 GLRT (Generalized Likelihood Ratio Test)

So far we have assumed that the distributions under H0 and H1 are perfectly known and the likelihood or
aposteriori ratio is computable. However, in practice this is not the case. Let us look at a simple hypothesis
testing problem of normal means and some practical tests for that setting.

In the normal means problem, the two hypothesis of interest are:

H0 : X ∼ N (0, σ2)

H1 : X ∼ N (µ, σ2)

e.g. in a classification problem, if we assume that class conditional densities are Gaussian, i.e. p(x|Y ) ∼
N (µy, σ

2), then the classification problem is essentially the normal means hypothesis testing problem stated
above. The likelihood ratio test in this setting corresponds to the test statistic xµ (or xTµ in multi-variate
case). This is known as a matched filter since we are essentially testing matching the observation x with
the known signal µ.

If µ is not known, then we have a composite hypothesis testing problem:

H0 : X ∼ N (0, σ2)

H1 : X ∼ N (µ, σ2), µ > 0
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This is particulary the case in problems such as anomaly detection where the abnormal case corresponds to
some unknown activation µ > 0. In this case, there are two approaches: (1) Bayesian - here we assume a
prior on the unknown parameter µ and consider the Bayesian LRT:

P0(x)

Eµ[P1,µ(x)]
> T

or (2) Generalized likelihood ratio test (GLRT):

P0(x)

maxµ P1,µ(x)
=

P0(x)

P1,µ̂mle(x)
> T

This is essentially a plug-in method where we plug-in the maximum likelihood estimate of the parameter
under the alternate hypothesis. For the normal means problem, the GLRT simplifies to the test statistic x2

(or xTx = ‖x‖2 in multi-variate setting) since the MLE of the mean is simply x (if there is one sample or
x̄ =

∑n
i=1 xi/n if there are n samples). This is known as the energy detector since ‖x‖2 is the total energy

in the signal.

Remark: While the GLRT is a natural solution to unknown parameters, it may not be optimal in all settings.
For example, consider the high-dimensional setting where x is a sparse d-dimensional vector with only k non-
zeros. Then the energy detector will have very poor performance because the non-zero signal components
are averaged with noise energy in the remaining components. On the other hand, another simple test based
on the max statistic maxi xi = ‖x‖∞ can perform much better. In fact, it can be shown that that the energy

detector asymptotically drives the false alarm and miss probabilities to zero only if µ�
√
σ2d. On the other

hand, the max detector works even if µ >
√

2σ2 log d since the maximum of d iid draws from a standard

Gaussian distribution is <
√

2σ2 log d with probability → 1 for large d.


