
10-704: Information Processing and Learning Spring 2012

Lecture 20: Redundancy Lower Bound, Sequential Prediction
Lecturer: Aarti Singh Scribes: Salman Salamatian

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

20.1 Lower Bound on Redundancy

In the previous discussions (Lectures 10-14) we have found some upper bounds for universal codes. We
basically used 2 techniques (and showed they had similar performance asymptotically):

Mixture Models

In this model, we suppose the universal code has the form :

Qdir =
∑
θ∈Θ

π(θ)Pθ

where the prior distribution for the parameters θ ∈ Θ is π ∼ Dirichlet(1

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
|X |−1

) is a Dirichlet distribution

over (|X | − 1)−dimensional probability simplex. Also remember that we had found that the maximum
redundancy using the above mixture model for the class of iid processes was:

max
θ∈Θ

1

n
Dn(Pθ||Qdir) = O(

|X | − 1

2

log(n)

n
)

Two-Stage MDL

In this method, the universal estimator was the one that minimized the sum of the length to describe the
model and the length to code message using the model:

qMDL = arg min
(γ,q∈Qγ)

[L(γ) + L(q) + Lq(x
n)]

Again the maximum redundancy was in the order of:

O

(
parameters log(n)

n

)
where for iid processes the number of parameters is |X | − 1.

Using the redundancy-capacity theorem, we will show that these 2 methods achieve the asymptotic minimax
rates. In order to do so, we will find a lower bound for the capacity of a channel (as described in previous
lecture) which is same as the minimax redundancy, and show that it is of the same order as the maximum
redundancy achieved by the above two methods. Once again, we will take the same format as previous
lectures :

θ −→ X −→ Z = θ̂(X)

20-1

20-2 Lecture 20: Redundancy Lower Bound, Sequential Prediction

20.1.1 Lower Bound on Redundancy Through Channel Capacity

We know that C = maxπ(θ) I(θ,X). Consider π(θ) ∼ Uniform on θ ∈ Θ. Moreover call Z = θ̂(X). Then

I(θ,X) = H(θ)−H(θ|X) (20.1)

≥ H(θ)−H(θ|Z) (20.2)

= H(θ)−H(θ − Z|Z) (20.3)

≥ H(θ)−H(θ − Z) (20.4)

where (20.2) is by Data Processing Inequality, and (20.4) holds since conditioning does not increase entropy.

Now suppose there exists an estimator θ̂ = Z such that E[||Z − θ||2] ≤ ε for any θ ∈ Θ. Then

I(θ,X) ≥ H(θ)− k

2
log
(

2πe
ε

k

)
(20.5)

= vol(Θ)− k

2
log
(

2πe
ε

k

)
(20.6)

where (20.5) is obtained using the fact that the maximum entropy continuous distribution subject to a 2nd
moment constraint E[||Z − θ||2] ≤ ε is the k-dimensionnal normal distribution, where k is the number of
parameters (for iid process, k = |X | − 1). Finally we have that

C = max
π(θ)

I(θ,X) ≥ vol(Θ) +
k

2
log

(
k

2πeε

)
(20.7)

Note that we still have to show that there exists an estimator θ̂ = Z such that E[||Z−θ||2] ≤ ε for any θ ∈ Θ

For iid processes, θ = (p1, . . . , p|X |−1), the probability of each symbol. Consider θ̂ = (p̂1, . . . , p̂|X |−1), where

p̂j =
nj
n for j = 1, . . . , |X |− 1 the simple fraction estimator. Note that E[p̂j] = pj and hence E[θ̂] = θ. Also,

E[‖θ̂ − θ‖2] = var(θ̂) =
∑|X |−1
j=1 E[(p̂j − pj)2] =

∑|X |−1
j=1 var(p̂j). It is easy to verify that var(p̂j) = O(1/n).

Thus,

E
[
‖θ̂ − θ‖2

]
= O

(
|X | − 1

n

)
:= ε

Since vol(Θ) <∞ is a constant and for iid processes k = |X | − 1, this gives:

C ≥ constant+
|X | − 1

2
log
(n

2πe

)
(20.8)

Hence, the lower bound for the channel capacity per symbol (above expression divided by n), which is equal
to minimax redundancy by the redundancy-capacity theorem, and the upper bounds (of mixture and MDL)
match, those estimators are hence minimax optimal.

Remark: Notice that the above bound was derived using a uniform prior on the parameter space Θ which
is not the least favorable prior. Often computing the least favorable prior is not easy, but using any other
prior gives us a lower bound on the channel capacity and minimax redundancy. For parametric classes, the
lower bound given by any prior is the same up to constants (in fact the best first-order term in capacity is
given by the Dirichlet prior used in the mixture model we considered for upper bound). However, the same
is not true for non-parametric classes, where the choice of the prior used to compute lower bound needs to
be judicious to yield a large lower bound (if lower bound is not as large as possible, then it may not match
the upper bound and may not reflect the complexity of the minimax problem).

20.2 General Loss Function

So far we have only discussed shown the connection of modeling or prediction under log loss with coding and
information theory. However we would like to generalize this discussion for applications in classification and

Lecture 20: Redundancy Lower Bound, Sequential Prediction 20-3

regression for example. We will consider here a general loss function loss(·, ·) > 0 that is upper bounded by
a constant L:

L = max
X,X̂

loss(X, X̂)

The approach we will take here, will be to consider sequential prediction, that is given X1, X2, . . . , Xt−1 we
want to guess Xt (Note that standard regression and classification are included in this set up and correspond
to X1, . . . , Xt−1 being the iid tranining points and Xt being the test point). We define bt : X t−1 → X . We
define the bayes estimator with respect to Pθ as :

b
Bayes(Pθ)
t = argmin

bt

Eθ

[
loss(Xt, X̂t)

]
where Pθ is the actual distribution of Xt and X̂t = bt(X

t−1).
If we do not know Pθ, we might use another distribution Q. We can define the bayes estimator for an
arbitrary distribution Q:

b
Bayes(Q)
t = argmin

bt

EQ

[
loss(Xt, X̂t)

]
Q could for example be the empirical distribution.

Lemma 20.1
Eθ

[
loss(b

Bayes(Q)
t , xt)− loss(bBayes(Pθ)

t , xt)
]
≤ L

√
2D(Pθ||Q)

Since D(Pθ||Q) is the excess risk under log loss, this gives a relation between performance under log-loss
and any other loss function. In other words we can use the minimax estimator for log loss and still get an
upper bound on the excess risk for any other bounded loss function. (There is a way to handle unbounded
but smooth loss functions, but we won’t discuss that here.) In many cases, the upper bound on other loss
funtions is also tight (i.e. there exist matching lower bounds). However, there are cases where it is possible
to obtain a better bound on the other loss functions than what is provided by using the minimax estimator
for log loss and plugging that in to obtain a predictor for other loss functions.
Proof:

Eθ

[
loss(b

Bayes(Q)
t , xt)− loss(bBayes(Pθ)

t , xt)
]

(20.9)

=
∑
xt

Pθ(xt)
[
loss(b

Bayes(Q)
t , xt)− loss(bBayes(Pθ)

t , xt)
]

(20.10)

≤
∑
xt

(|Pθ(xt)−Q(xt)|+Q(xt))
[
loss(b

Bayes(Q)
t , xt)− loss(bBayes(Pθ)

t , xt)
]

(20.11)

≤
∑
xt

|Pθ(xt)−Q(xt)|L (20.12)

= L TV (Pθ, Q) (20.13)

≤ L
√

2D(Pθ||Q) (20.14)

Where (20.12) follows by definition of the Bayes estimator (b
Bayes(Q)
t minimizes loss function if xt is dis-

tributed as Q), TV is the total variation, and (20.14) is by Pinsker’s Inequality.

20.3 Prediction of sequence/Online Learning

Consider a sequence X1, X2, . . . , Xt−1 Xt. In online learning we do not want to assume that Xt is stochastic
conditioned on previous values X1, . . . , Xt−1. That is, we suppose that an adversary selects Xt at every
iteration.

20-4 Lecture 20: Redundancy Lower Bound, Sequential Prediction

To make the problem well-posed, the goal in online learning is to compare the performance of the predictor
Q we come up with to some predictors (or oracles or experts) {Pθ}θ∈Θ. A deterministic predictor would not
work in an adversarial setting and hence the predictor Q has to a randomized predictor.

Definition 20.2 We define the regret as the redundancy we suffer compared to the best oracle:

regret(Q) ≡ log

(
1

Q(xn)

)
−min
θ∈Θ

log

(
1

Pθ(xn)

)
where Q(Xn) =

∏n
t=1Q(Xt|Xt−1).

We also define the worst-case regret:

Definition 20.3 The worst-case regret is defined as

¯regret(Q) = max
xn

[
log

(
1

Q(xn)

)
−min
θ∈Θ

log

(
1

Pθ(xn)

)]
= max

θ∈Θ
max
xn

[
log(

1

Q(xn)
)− log(

1

Pθ(xn)
)

]
Note that replacing the maxxn with Exn∼Pθ [.] in the last line gives us the usual KL-divergence D(Pθ||Q).
Thus, the online learning setting is same as considering the worst case redundancy instead of expected
redundancy. Recall that we discussed worst-case redundancy in Lecture 10 and showed that the optimal
solution is given by the normalized maximum likelihood distribution QNML. However, since QNML does
not have the nice consistency property required in a sequential setting (refer to Lecture 10), we instead use
Q is a mixture of the predictors {Pθ}θ∈Θ:

Q(xt) =
∑
θ

π(θ)Pθ(x
t)

In this case we have that the conditional probability of Xt given the observed sequence Xt−1 is :

Q(xt|xt−1) =
Q(xt)

Q(xt−1)
=

∑
θ π(θ)Pθ(x

t)∑
θ′ π(θ′)Pθ′(xt−1)

(20.15)

=

∑
θ π(θ)Pθ(xt|xt−1)Pθ(x

t−1)∑
θ′ π(θ′)Pθ′(xt−1)

(20.16)

=
∑

ω(θ)Pθ(xt|xt−1) (20.17)

where ω(θ) = π(θ)Pθ(xt−1)∑
θ′ π(θ′)Pθ′ (x

t−1) .

The optimal solution is thus a mixture of the conditional oracle/expert distributions where the mixing
weights are changed from iteration to iteration based on how well oracle distributions have done on the
sequence thus far i.e. Pθ(x

t−1) - likelihood of xt−1. This “adaptation” of the mixing weights is implemented
through a Weighted Majority Algorithm proposed independently in Vovk’90 and Littlestone-Warmuth’94,
which also works not only for log loss but any general loss function.

Weighted Majority Algorithm

Initialize : w0(θ) = 1
|Θ| , ∀θ ∈ Θ

For t ≥ 1:

Lecture 20: Redundancy Lower Bound, Sequential Prediction 20-5

1. Predict using
∑
θ∈Θ wt(θ) exp−ν loss(b

θ
t ,X)

Remark 1: Note that ν = 1 and loss= -ve log likelihood gives the previous mixture model.
Remark 2: In classification and regression problems, an oracle bθt is drawn from the collection of all
oracles with distribution wt(θ) instead of using the mixture of oracles specified above.

2. We update the priors wt(θ) using :

wt+1(θ) =
wt(θ) exp−ν loss(b

θ
t ,xt)∑

θ∈Θ wt(θ) exp−ν loss(b
θ
t ,xt)

Remark: Boosting is also an example of this framework where the oracles are data points, and the weights
corresponding to weights on the data points are updated exponentially based on the loss incurred at that
data point at each iteration. However, there is a key difference that the ν is not fixed but is also updated at
each iteration.

