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19.1 Review

So far in this course, we have covered:

1. Source Coding and Data Compression, where we derived the source coding theorem and learned
codes for lossless compression. Key result: you can perfectly recover a signal if your rate (bits trans-
mitted per communication) is at least the entropy of the random variable. We established source
coding theorem using typical set encoding which requires exponential table lookups. Practical codes
we dicsussed include Shannon code, Huffman code (optimal prefix code), and Arithmetic code (adap-
tive to source characterisitcs since involves probabilistic modeling of the source). Arithmetic codes are
example of universal codes. Another popular universal code is Lempel-Ziv encoding which does not
involve probabilistic modeling, see Cover-Thomas Sec 13.4, 13.5.

2. Channel Coding, where we derived the Channel Coding Theorem and learned codes to perfectly
recover a signal from a noisy channel. Key result: you can perfectly recover a signal from a noisy
channel if the transmission rate is less than the capacity of the channel. We established Channel
coding theorem using random coding and jointly typical decoding which requires exponential table
lookups. Practical error-correcting codes include block codes such as Hamming code, Reed-Solomon
code, Reed-Muller code, BCH (Bose-Chaudhuri-Hocquenghem) code, Goppa codes; and convolution or
streaming codes such as Turbo codes, Digital Fountain and LDPC (Low Density Parity Check) codes.
The class of convolution codes are able to achieve performance pretty close to capacity, however we
won’t be able to discuss any of these in detail in this class.

3. Joint Source and Channel Coding, where we combined source and channel coding and learned to
perfectly recover a signal through a noisy channel with some compression. You can perfectly recover a
signal from a noisy channel if the entropy of the original signal is less than the rate of communication
which must not exceed the channel capacity.

4. Rate Distortion Theory, where we learned how to accept some loss in signal integrity and studied
the tradeoffs between compression and accuracy.

Key result: If the compression rate R > R(I)(D) = minp(X̂|X):E[d(X,X̂)]≤D I(X, X̂), the rate distortion
function, then you can recover the signal with distortion ≤ D. We did not prove this formally,
but rate-distortion is the dual of channel coding and the proof mimics that of noisy channel coding
theorem with the following differences: The proof is based on randomly generated 2nR codewords
drawn iid from p(X̂). The message is encoded using a random codeword that is distortion typical
with it and decoding simply involves a table look up. x̂n is distortion typical with xn if they are
jointly typical and |d(xn, x̂n) − E[d(xn, x̂n)]| < ε. The failure probability is the probability that
none of the 2nR codewords is distortion typical with the message xn, this occurs with probability

19-1



19-2 Lecture 19: Minimax Risk as Channel Capacity

(1 − 2−nI(X,X̂))2nR ≤ e−2n(R−I(X,X̂))

which goes to zero as n → ∞ if R > I(X, X̂). The result follows
by choosing p(X̂) based on the p(X̂|X) which achieves the min in the definition of the rate-distortion
function. For a rigorous proof, see Cover-Thomas Sections 10.4, 10.5.

Today, we study how statistical modeling can be viewed as data compression, and make explicit the analogy
between lossy coding through a noisy channel and statistical modeling. The key result we derive is that the
minimax excess risk ( or redundancy) for estimating a parameter θ from a family Θ, the Bayes risk associated
with the least favorable prior, and the channel capacity when statistal modeling is viewed as communication
through a noisy channel are all equivalent.

19.2 Statistical Modeling as Data Compression

Today we look at how choosing a model from a family of models {Pθ}θ∈Θ, given some observed data Xn,
can be viewed as a noisy channel problem.

Consider the following channel to model the data generation process:

Source: πθ → θ → Channel → X

where the channel is specified by the transisition probabilities given by Pθ(X), and our θ was drawn from Θ
according to a source distribution or prior π(θ).

19.2.1 Channel Capacity is Minimum Excess Risk

The main theorem we will prove in this lecture is the following:

Theorem 19.1 (Redundancy-Capacity Theorem) Suppose we have a prior π(θ), let p(x) be the mix-
ture model

∑
θ π(θ)pθ(x). Then we have:

max
π(θ)

DKL(pθ(X)π(θ)‖π(θ)p(X))︸ ︷︷ ︸
channel capacity maxπ(θ) I(θ;X)

= min
q∈Q

max
θ∈Θ

DKL(pθ(X)‖q(X))︸ ︷︷ ︸
minimax KL-risk

and the distribution q∗ that achieves the minimax KL-risk is given as q∗(x) =
∑
θ π
∗(θ)pθ(x), where π∗ is

the least favorable prior distribution that achieves the capacity.

Under log loss, recall the excess risk is the Kullback-Leibler divergence,

Eθ[log
1

q(X)
]−H(X) = DKL(pθ, q).

We can also clearly see that this is the expected redundancy for coding one symbol using q, when the symbol
is drawn from pθ. Using q, we expect X to be coded in Eθ[log 1

q(X) ] bits, when only H(X) are required.

We then want to find the minimax risk R = minq∈Q maxθ∈ΘDKL(pθ||q).

The channel capacity is defined as C = maxPX I(X,Y ), which in the case of modeling, would be C =
maxπθ I(θ,X). We prove below that the capacity of this channel C is the minimax excess risk.



Lecture 19: Minimax Risk as Channel Capacity 19-3

We will divide the proof into two steps.

Step 1: Channel Capacity is Worst Optimal Bayes Risk

Given a prior π(θ), we define the optimal Bayes Risk as

min
q∈Q

∑
θ

π(θ)DKL(pθ‖q)

The prior π that maximizes the optimal Bayes risk is then known as the least-favorable prior and we say
that it achieves the worst optimal Bayes risk.

We are ready then to state the proposition that constitute the first step in the proof of Theorem 19.1.

Proposition 19.2

max
π(θ)

DKL(pθ(x)π(θ)‖π(θ)p(x))︸ ︷︷ ︸
channel capacity

= max
π(θ)

min
q∈Q

∑
θ

π(θ)DKL(pθ‖q)

Proof: (Proof of Proposition 19.2)
We compute

C = max
π

I(θ, x)

C = max
π

DKL(p(θ, x)||π(θ)p(x))

C = max
π

∑
θ,x

p(θ, x) log
p(θ, x)

π(θ)p(x)

Now, using p(θ, x) = π(θ)pθ(x), we continue

C = max
π

∑
θ,x

pθ(x)π(θ) log
pθ(x)π(θ)

π(θ)p(x)

C = max
π

∑
θ,x

pθ(x)π(θ) log
pθ(x)

p(x)

C = max
π

∑
θ

π(θ)DKL(pθ(x)||p(x))

Now, we note that p(x) is the posterior, and we express it as p(x) =
∑
θ p(θ, x) =

∑
θ π(θ)pθ(x) ≡ qπ, a

mixture of the distributions in the class {Pθ}θ∈Θ with mixture weights π(θ).

To finish the proof, we will show that for all priors π, for all distributions q, it holds that∑
θ

π(θ)DKL(pθ‖qπ) ≤
∑
θ

π(θ)DKL(pθ‖q)

Note that this implies that qπ minimizes the Bayes risk under prior π.
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∑
θ

π(θ)DKL(pθ||qπ) =
∑
θ

π(θ)
∑
x

pθ(x) log
pθ(x)

qπ(x)

q(x)

q(x)

=
∑
θ

π(θ)DKL(pθ||q) +
∑
θ

π(θ)
∑
x

pθ(x) log
q(x)

qπ(x)

=
∑
θ

π(θ)DKL(pθ||q) +
∑
x

∑
θ

π(θ)pθ(x) log
q(x)

qπ(x)

=
∑
θ

π(θ)DKL(pθ||q) +
∑
x

qπ(x) log
q(x)

qπ(x)

=
∑
θ

π(θ)DKL(pθ||q)−DKL(qπ||q)

≤
∑
θ

π(θ)DKL(pθ||q)

using Gibb’s inequality (KL divergence ≥ 0).

Therefore, we arrive at the conclusion that

C = max
π

∑
θ

π(θ)DKL(pθ‖qπ)

= max
π

min
q∈Q

∑
θ

π(θ)DKL(pθ‖q)

Step 2: Worst Optimal Bayes Risk is Minimax Risk

We will now show that
max
π

min
q∈Q

∑
θ

π(θ)DKL(pθ‖q) = min
q∈Q

max
θ
DKL(pθ‖q)

We will use the minimax theorem.

Theorem 19.3 (Minimax Theorem)

For a function f : X × Y → R

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y)

and the minimizer in LHS is equal to the minimizer in RHS for the value of y that achieves the maximum
in RHS, provided that f satisfies the following conditions:

1. f continuous

2. f convex in x for fixed y

3. f concave in y for fixed x

4. both X and Y compact and convex.
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We let f(q, π) =
∑
θ π(θ)DKL(pθ‖q). Since f is convex in q and linear in π and the set of distributions is

the probability simplex and hence is compact and convex.

Therefore, we conclude that

max
π

min
q∈Q

∑
θ

π(θ)DKL(pθ‖q) = min
q∈Q

max
π

∑
θ

π(θ)DKL(pθ‖q)

= min
q∈Q

max
θ
DKL(pθ‖q)

where the second step follows because for a fixed q, a prior which puts all probability mass on the worst case
θ is a least favorable prior.

Moreover, the minimizer of minimax problem q∗ is equal to
∑
θ π
∗(θ)pθ(x), where π∗ achieves the maximum

in maximin problem.

19.3 Example of Advantages of Mixture Models

Redundancy-Capacity theorem tells us that mixture models are good for inference, and the optimal mixture
model corresponds to the least favorable prior. We briefly discuss an illustrative example to show why
mixture models can be very useful in information theory. Consider X drawn from a Bernoulli distribution
with parameter θ, θ ∈ {0, 1}. Denote by P0 and P1 the distributions for X obtained from θ = 0 and θ = 1,
respectively.

Note that DKL(P0||P1) =∞. Thus the distributions are infinitely apart in KL divergence.

Now let Q be the mixture distribution Q = 1
2P0 + 1

2P1, and observe that D(P0||Q) = D(P1||Q) = 1 bit.

Thus, the mixture model approximates both distributions to within 1 bit. On the other hand, a plug-in
model such as maximum likelihood model chosen based on data will yield either P0 or P1 which is bad
in a universal or minimax sense since the chosen model will be arbitrarily bad in approximating the other
candidate model.


