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15.1 The Information Theory Diagram

Until now we have studied the data compression (source coding) problem, schematically described by the
following diagram:

Source Compressor Decompressor Receiver

We now turn to the channel coding problem, where we introduce an intermediate step between the output
of the compressor and the input to the decompressor:

Source Compressor Channel Decompressor Receiver

A “channel” is any source of noise, for example a wireless link, an error prone storage device, an IP network
with the potential for packet loss, etc.

In the presence of such noise we need to introduce some redundancy in the signal to ensure successful
transmission, so we add two new steps in the diagram:

Compressed
Message

Encoder Channel Decoder
To

Decompressor

Input X Output Y

Essentially, a channel is a conditional distribution p(Y |X). We will focus on discrete memoryless chan-
nels (DMC):

Discrete: Input and output alphabets X ,Y are finite; and

Memoryless: p(Y |X) is independent of outputs in previous timesteps (later we will discuss more general
feedback channels).

Definition 15.1 The information capacity of a (DMC) channel is

C = max
p(x)

I(X,Y )

where the maximum is over all distributions on X.
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Informally, the operational capacity of a channel is the highest rate in terms of bits/channel use (e.g. a
single transmission over a wireless medium) at which information can be sent with arbitrarily low probability
of error.

The separation of the source coding and channel coding problems (i.e. the compressor and encoder) is for
convenience of analysis only. We will see later on that we don’t pay any cost for this division.

15.2 Examples of Information Capacity

We now calculate the information capacity for some simple channel models.

Example: Noiseless binary channel
Consider the following transition model for the channel, where the arrows are annotated with values of
p(y|x):
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Though we have not yet defined operational capacity exactly, intuitively we would expect that the most
information that can be sent with a single use of this channel is exactly 1 bit.

To calculate the information capacity, note that for any distribution over the inputs p(x) we have

I(X,Y ) = H(Y )−H(Y |X)
= H(Y ) because Y is not random given X
= H(X) because distributions of Y and X are the same.

Since X is just a Bernoulli random variable, we know that its entropy is maximized when p(0) = p(1) = 1/2,
and

max
p(x)

I(X,Y ) = 1.

Example: Noisy channel with non-overlapping output distributions
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As for the noiseless binary channel, we would expect the operational capacity of this channel to be exactly
1 bit/channel use.
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Also for the information capacity,

max
p(x)

I(X,Y ) = max
p(x)

H(X)−H(X|Y )

= max
p(x)

H(X) because knowing Y fully determines X

= 1

as before.

Example: Noisy typewriter
In this model, each of the 26 characters of the alphabet are either transmitted exactly with probability 0.5,
or replaced by the next character in the alphabet with probability 0.5:
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If all characters were transmitted exactly, we would expect a single transmission to carry log2 26 bits, which
clearly can’t be achieved for this channel. But if we only transmit every other letter (i.e. A, C, E...), then
if we receive A or B we will know that A was transmitted, if we receive C or D we will know that C was
transmitted, etc. Hence we can use the channel in such a way that it is essentially equivalent to the noisy
channel with non-overlapping output distributions, and we might expect to transmit log2 13 bits/channel
use.

To calculate the information capacity, first note that for any input distribution p(x), the marginal entropy of
Y is at most H(Y ) ≤ log2 26, which can be achieved with equality if p(x) is uniform. Also, the conditional
entropy of Y given X is

H(Y |X) =
∑
x

p(x)H(Y |X = x)

=
∑
x

p(x)H(Bernoulli(1/2))

=
∑
x

p(x)

= 1.

So

max
p(x)

I(X,Y ) = max
p(x)

H(Y )−H(Y |X)

= max
p(x)

H(Y )− 1

= log2 26− 1

= log2 13.
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Example: Binary symmetric channel (BSC)
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We have

I(X,Y ) = H(Y )−H(Y |X)

= H(Y )−H(Bernoulli(p))

≤ 1−H(Bernoulli(p))

which is achieved with equality for p(x) uniform, so

max
p(x)

I(X,Y ) = 1−H(Bernoulli(p)).

Note that in this case, we can interpret H(Bernoulli(p)) as the information lost per one bit of transmission.

Example: Binary erasure channel
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We again begin by writing
I(X,Y ) = H(X)−H(X|Y ).

Note that if we observe Y = 0 or Y = 1, then X is known exactly, so H(X|Y 6= e) = 0. Furthermore
H(X|Y = e) = H(X), so

H(X|Y ) = 0 · P (Y 6= e) +H(X) · P (Y = e)

= αH(X)

and

I(X,Y ) = (1− α)H(X)

≤ 1− α

which is achieved with equality for p(x) uniform, so

max
p(x)

I(X,Y ) = 1− α.

Again, the interpretation is obvious. We lose α fraction of bits per transmission.
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15.2.1 Weakly Symmetric Channels

Notice that in many of the above examples the maximizing distribution on X in the information capacity is
uniform. Here we describe a class of channels that have this property.

Note that a DMC channel with input alphabet X and output alphabet Y can be described in terms of a
transition probability matrix P ∈ RX×Y where Pij = p(yj |xi). If both the rows and the columns of P
are permutations of each other, then the channel is called symmetric. For such a channel, we have that
H(Y |X = x) = c is constant for all x ∈ X and so H(Y |X) = c as well, and so for any x ∈ X

I(X,Y ) = H(Y )−H(Y |X)

= H(Y )− c
≤ log2 |Y| − c

The inequality is achieved exactly when the distribution of Y is uniform. For a symmetric channel, Y is
uniform whenever X is uniform, since then

p(y) =
∑
x

p(y|x)p(x)

=
1

|X |
∑
x

p(y|x)

which, by assumption, is constant for all y since the columns of P are permutations of each other.

Note that the above argument holds if we relax the assumption on the columns of P to summing to the same
quantity (we only used the permutation property of the columns in the last step to argue precisely that their
sum is constant). Channels of this type are called weakly symmetric.

15.3 Rate of a Channel Code

Consider the problem of transmitting sequences of length n over the channel.

Message Encoder Channel Decoder
W Xn Y n Ŵ

Definition 15.2 A (M,n) code for a channel (X ,Y, p(Y |X)) consists of

1. an index set {1, 2, ...,M};

2. an encoding function Xn : {1, 2, ...,M} → Xn;

3. and a decoding function g : Yn → {1, 2, ...,M}.

Definition 15.3 The rate of an (M,n) code is

R =
log2M

n

and is measured in terms of bits/transmission (i.e. channel use).
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Definition 15.4 A rate R is achievable if there exists a sequence of (2nR, n) codes such that the maximum
probability of error in transmission for any message of length n converges to 0 as n→∞.

We can now give a precise definition for operational capacity.

Definition 15.5 The operational capacity of a channel is the supremum of all achievable rates on that
channel.

We will prove next time that the operational capacity of the channel is exactly equal to the information
capacity maxp(x) I(X,Y ). This is the Shannon Noisy Channel Coding theorem.


