
10-704: Information Processing and Learning Spring 2012

Lecture 12: Universality for Hierarchical Classes
Lecturer: Aarti Singh Scribes: Daniel Munoz

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

12.1 Universal Coding for Stationary Processes

Last time we looked at redundancy bounds for IID and Markov processes, here we consider the more gen-
eral class of stationary processes P (with a finite alphabet), i.e., PMarkov-m ⊂ Pstationary, where p(xn) =∏n

i=1 p(xi|xi−1
i−m) for p ∼ PMarkov-m. We can approximate any stationary processes by increasing the order of

the Markov process. Last class we ended with the theorem which we’ll now prove.

Theorem 12.1 Let p ∈ Pstationary with entropy rate Hp(X ) = limm→∞Hm where Hm = H(Xm+1|X1, . . . , Xm).
If Cm is a universal code for PMarkov-m, then

Ep[Rp,Cm ] ≤ Hm −Hp(X ) +
1

n

|X |m(|X | − 1) log n

2
+

1

n
Km (12.1)

On the rhs, the first two terms are the approximation error due to using a Markov-m process to approximate
a stationary process, and the last two terms are the cost/expected redundancy for using a universal code for
the Markov-m process.

Proof: Let q denote a universal predictor for a Markov-m process using which Cm is built. For each
p ∈ Pstationary, let pm(xn) = p(xm)

∏n
t=m+1 p(xt|xt−1

t−m) denote the best Markov-m approximation to p.
Then

Ep[Rp,q] =
1

n
Dn(p||q) =

1

n
Ep

[
log

p(xn)

q(xn)

]
=

1

n
Ep

[
log

p(xn)

pm(xn)

]
+

1

n
Ep

[
log

pm(xn)

q(xn)

]
(12.2)

=
1

n
Dn(p||pm) +

1

n
Ep

[
log

pm(xn)

q(xn)

]
, (12.3)

The first term is the approximation error and the second is the estimation error. In the last class, we
upper-bounded the expectation by |X |m(|X | − 1) log n/2 + Km. Now we upper-bound bound the first term.

Dn(p||pm) = Ep[log p(xn)]− Ep[log pm(xn)]

= Ep[log p(xn)]−
(
Ep[log p(xm)] + Ep[log p(xm+1|xm

1 )] + . . . + Ep[log p(xn|xn−1
n−m)]

)
= Ep[log p(xn)]− (Ep[log p(xm)] + (n−m)Ep[log p(xm+1|xm

1 )])

= −H(Xn) + H(Xm) + (n−m)H(Xm+1|Xm
1 )

= −H(Xn) + H(Xm) + (n−m)Hm
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where the 3rd line holds due to p being stationary. Now we will upper-bound the first two terms by lower-
bounding its negative

H(Xn)−H(Xm) = Ep

[
log

p(xn)

p(xm)

]
= Ep[log p(xn

m+1|xm
1 )]

= Ep

[
log

n∏
i=m+1

p(xi|xi−1
1 )

]
(chain rule)

=

n∑
i=m+1

H(Xi|Xi−1
1 ) (definition)

≥ (n−m)Hp(X )

To see the last step, consider any term

H(Xi|Xi−1
1 ) = H(Xj |Xj−1

j−i+1) (for any j ≥ i by stationarity)

≥ H(Xj |Xj−1
1 ) (conditioning does not increase entropy)

Since this is true for all j ≥ i, it is also true if we let j →∞. Thus, H(Xi|Xi−1
1 ) ≥ Hp(X ).

Therefore,

Dn(p||pm) ≤ −(n−m)Hp(X ) + (n−m)Hm (12.4)

≤ n(Hm −Hp(X )), (12.5)

where the last line holds since Hm ≥ Hp(X ) due to a Markov process being an approximation.

This theorem says we can handle stationary processes by designing a code that is universal for Markov-m
processes by letting m scale with n (to drive approximation error to zero). However, we can only allow
m = o(log n) in order to make sure the estimation error also goes down with n.

Also note that, in this case, the expected redundancy does not go to zero uniformly for all p ∈ Pstationary,
unlike universal coding of Markov processes. Thus, we achieve weak universality for stationary processes,
whereas universal codes for Markov processes are strongly universal.

12.2 Hierarchical Universality

So far we have seen either small classes of iid or Markov processes on finite alphabets for which uniform
redundancy rates via universal coding are possible, or a very large class of all stationary processes for which
uniform redundancy bounds are not possible. A drawback of previous results is that if we use codes that
are universal for a large class (say Lempel-Ziv codes which are universal for stationary processes), and if the
source happened to be well-behaved (e.g. iid or Markov), then such codes may yield worse redundancy rates
than an encoding which is tailored to the simpler class. Thus, there is a tradeoff between how large a class
of source processes our code can be universal for and the redundancy rate it provides. Can we design a code
for a large class that also works as well as the best code if the class happens to be well-behaved? The answer
is yes.

Consider the countable union of a sequence of index sets Θ = ∪{Θk}k≥1, where k indicates the complexity
of the class. Often these indexed sets are nested (Θ1 ⊂ Θ2 ⊂ Θ3 . . .).

Examples:

• Θk : k’th order Markov sources
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• Θk : Histogram with k bins (non-parametric)

• Θk : Trees with k leaves

We would like to design a code that is universal for Θ but if the source happens to be a member of Θk, then
it acts as if k was known.

In [RY84], the authors proposed such a code that adapts to the unknown order of a Markov process. The
idea was to design two-stage codes, that first encode the class index k and then encode data using the best
predictor for class Θk. Finally, the correct class is chosen adaptively as:

k̂ = arg min
k

[L(k) + Lk(xn)]. (12.6)

where L(k) is the length of a prefix code for integer k and Lk(xn) is the length of a universal code for class
Θk. From a machine learning viewpoint, the first term can be thought of as a regularizer and the second
term measures how well it fits the data. If p ∈ Θm, the first term is bounded by logm + log logm (see
homework problem on designing prefix codes for integers) and the second term by the bound on expected
redundancy of universal code for Thetam: |X |m(|X | − 1) log n/2 + Km. In the next class, we will discuss
how this relates to Minimum Descriptor Length (MDL).
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