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Lecture 11: Universal redundancy bounds
Lecturer: Aarti Singh Scribes: Rafael Izbicki

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

11.1 Brief review

Let P be a family of probability distributions over the alphabet X . Last time, we defined

R̄c = sup
p∈P

Ep

[
L(Xn)

n
−
(
− log p(Xn)

n

)]
to be the worst expected redundancy of a coding for a given family P. We want R̄c to be small. We
also defined

R∗c = sup
p∈P

max
xn

[
L(xn)

n
−
(
− log p(xn)

n

)]
to be the worst maximum redundancy. Note that R̄c ≤ R∗c .

Later in the course, we will show that when attempting to build a universal model for the distribution of
the process Xn, mixtures of distributions over P are optimal in some sense. That is, one should estimate
the distribution of the sequence as q(xn) =

∑
p∈P θ(p)p(x

n), where θ(p) is a prior measure probability over
P. Moreover, one can build efficient arithmetic coding using mixture distributions that are nearly optimal.
Two examples are as follows:

Example 1 Let P be the class of all i.i.d. distributions over the (finite) alphabet X . Note that each
distribution in this class is characterized by a vector of probabilities (p1, . . . , p|X |). One can define the
following predictive probabilities:

qiid(xt = j|xt−1) =
n(j|xt−1) + 1

2

t− 1 + |X |
2

,

where xt−1 is used to indicate the first t−1 characters of the string and n(j|xt−1) is the number of occurrences
j in xt−1, the first t − 1 elements of the string. Today we will show that qiid is a mixture over P and also

that R̄qiid ≤
|X |−1

2
logn
n + K

n where K > 0 is a constant. Here R̄qiid is the worst expected redundancy of the
arithmetic code associated with qiid.

Example 2 Let P be the class of all m-order Markov processes over the (finite) alphabet X . One can define
the following predictive probabilities:

qmarkov(xt = j|xt−1) =
n((xt−1t−m, j)|xt−1) + 1

2

n(xt−1t−m|xt−1) + |X |
2

,

where n((xt−1t−m, j)|xt−1) is the number of counts of the subsequence (xt−1t−m, j) in xt−1. We have that

R̄qmarkov ≤ |X |m(|X |−1)
2

logn
n + Km

n where Km > 0 is a constant that depends only on m. Here R̄qmarkov

is the worst expected redundancy of the arithmetic code associated with qmarkov.
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11.2 i.i.d Processes

We now develop Example 1, that is, i.i.d Processes. First, we show that qiid is in fact a mixture of distribution
on P. Before that, let’s define a Dirichlet distribution.

Definition 11.1 Let α1, . . . , αk > 0. Let θ = (θ1, . . . , θk) ∈ <k be a random vector such that its probability
density function is given by

π(θ) =
Γ (
∑
i αi)∏

i Γ (αi)

∏
i

θαi−1
i

for all θ such that
∑
θi = 1, and 0 otherwise. We say that θ ∼ Dirichlet(α1, . . . , αk).

Note that when k = 2 we have a Beta distribution. Also, when all parameters α1, . . . , αk are 1, we have a
uniform distribution.

Proposition 11.2 Every i.i.d process p ∈ P defined over the finite alphabet X can be associated with a
vector of probabilities for each symbol θ = (p1, . . . , p|X |) where

∑
i pi = 1. Let qiid be as in Example 1. Then

we will show that qiid = q, where q is the distribution of the mixture of processes p ∈ P where the mixture
weights for p ≡ θ are given by the prior π(θ), where the prior is Dirichlet(1/2, . . . , 1/2).

Proof: Notice that we can rewrite qiid as

qiid(xn) =

n∏
t=1

qiid(xt|xt−1) =

n∏
t=1

n(j|xt−1) + 1
2

t− 1 + |X |
2

=

∏
x∈X (nx − 1

2 )(nx − 3
2 ) . . . ( 1

2 )

(n+ |X |
2 − 1)(n+ |X |

2 − 2) . . . ( |X |2 )
. (11.1)

The last step follows by gathering together terms that refer to the same symbol. Denoting by π the prior den-
sity of the Dirichlet distribution and by using the Law of Total Probability, we can calculate the distribution
q:

q(xn) =

∫
p∈P

p(xn)π(p)dp =

∫
p∈P

p(xn)
Γ
(∑

x
1
2

)∏
x Γ
(
1
2

) ∏
x

p
1
2−1
x dp.

Now, by independence, we have that p(xn) =
∏n
k=1 p(xk) =

∏
x∈χ p

nx
x (we gather together term that refer

to the same symbol). Hence

q(xn) =

∫
p∈P

Γ
(∑

x
1
2

)∏
x Γ
(
1
2

) ∏
x

p
nx+

1
2−1

x dp =

=
Γ
(∑

x
1
2

)∏
x Γ
(
1
2

) ∏x Γ
(
nx + 1

2

)
Γ
(∑

x nx + 1
2

) ∫
p∈P

∏
x

p
nx+

1
2−1

x
Γ
(∑

x nx + 1
2

)∏
x Γ
(
nx + 1

2

) dp =
Γ
(∑

x
1
2

)∏
x Γ
(
1
2

) ∏x Γ
(
nx + 1

2

)
Γ
(∑

x nx + 1
2

) , (11.2)

where we use the fact that the integral is the integral of the density of a Dirichlet distribution over all values
it assumes, and therefore is 1. Finally, using the fact that the Gamma distribution satisfies Γ(s + 1) =
sΓ(s) = s(s− 1)Γ(s− 1) = . . . , we get that Γ(nx + 1

2 ) = (nx + 1
2 − 1)(nx + 1

2 − 2) . . . ( 1
2 )Γ( 1

2 ). By using this
and a similar expansion to Γ

(∑
x nx + 1

2

)
, and noting that

∑
x nx = n, we get from 11.2 that

q(xn) =

∏
x∈χ(nx − 1

2 )(nx − 3
2 ) . . . ( 1

2 )∏
x∈χ(n+

∑
x

1
2 )(n+

∑
x

1
2 − 1) . . . (

∑
x

1
2 )
,

which is the same as 11.1 (notice that
∑
x 1 = |X |).
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We will now prove a proposition that shows how well arithmetic codes generated using qiid are for i.i.d.
sequences. But, before that, here is a usefull lemma:

Lemma 11.3 Let X1, . . . , Xn be i.i.d. random variables in X , and denote px = P (Xi = x), ∀x ∈ χ. Let
P = {(px)x∈X :

∑
px = 1, px ≥ 0}. Then the maximum likelihood estimate for the sequence x1, . . . , xn is

given as

sup
p∈P

p(x1, . . . , xn) =
∏
x

(nx
n

)nx

.

Proof: For any p ∈ P, we have that p(x1, . . . , xn) =
∏
x p

nx
x . We want to find the supremum of this function

with constrained to
∑
px = 1. Equivalently, we want the supremum of log p(x1, . . . , xn) subject to same

constraints. The Lagrangian is given by ∑
x

nx log px + λ
∑
x

px.

Taking the derivative and equating to zero, we get px = −nx

λ . Plugging this into the constrains, we get
λ = −n. The result follows from plugging the optimal px’s on the target function.

Proposition 11.4 Let P be the set of all i.i.d. distributions over the finite alphabet X . Let qiid be as in

Example 1. Then R̄qiid ≤ R∗qiid ≤
|X |−1

2
logn
n + K

n .

Proof: The first inequality is trivial. Now, by definition,

R∗qiid = sup
p∈P

max
xn

log

(
p(xn)

qiid(xn)

)
.

For each xn, and any p ∈ P, we have using Lemma 11.3 that

p(xn) ≤ sup
p∈P

p(xn) =
∏
x

(nx
n

)nx

.

We can also show that (by pairing each term on left side with a bounding term on right side, see e.g. pg 483
of Csiszar and Shields’ Tutorial.):

∏
x

(nx
n

)nx

≤
∏
x(nx − 1

2 )(nx − 3
2 ) . . . ( 1

2 )

(n− 1
2 )(n− 3

2 ) . . . ( 1
2 )

Hence, by using this bound and also the explicit form of qiid (which is in expression 11.1), we get (notice
that the both numerators are the same)

p(xn)

qiid(xn)
≤

(n+ |X |
2 − 1)(n+ |X |

2 − 2) . . . ( |X |2 )

(n− 1
2 )(n− 3

2 ) . . . ( 1
2 )

=

n∏
j=1

n+ |X |
2 − j

n+ 1
2 − j

. (11.3)

Now, assuming |X | is even (a similar argument can be worked out if |X | is odd), we can rewrite 11.3 as

(n+ |X |
2 − 1)!/( |X |2 − 1)!

(2n− 1)(2n− 3) . . . 1/2n
=

(n+ |X |
2 − 1)!2n

( |X |2 − 1)!(2n− 1)(2n− 3) . . . 1
. (11.4)

http://www.renyi.hu/~csiszar/Publications/Information_Theory_and_Statistics:_A_Tutorial.pdf
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Now, notice that (2n)! = (2n)(2n − 1)(2n − 2) . . . 1 = 2n(2n − 2)(2n − 4) . . . 2(2n − 1)(2n − 3) . . . 1 =
2n(n− 1)(n− 2) . . . 1(2n− 1)(2n− 3) . . . 1 = 2nn!(2n− 1)(2n− 3) . . . 1. Hence

(2n− 1)(2n− 3) . . . 1 =
(2n)!

2nn!
.

Plugging this into 11.4 yields

p(xn)

qiid(xn)
≤

(n+ |X |
2 − 1)!22nn!

( |X |2 − 1)!(2n)!

Now, using Stirling’s approximation to the factorial (n! ≈ K
√
nnn), we get that

p(xn)

qiid(xn)
≤ Cn

|X|−1
2 .

By noticing that the result holds for all sequences xn and all p ∈ P, and by taking log we prove the
proposition.

We note that a similar argument can be done for Example 2, that is, Markov Chains.

11.3 Stationary Processes

Now, let P be the class of all stationary distributions over the finite alphabet X . Any distribution of this
class can be approximated by a Markov process by letting the order of the Markov process m −→ ∞ with
n. We have the following result

Proposition 11.5 Let p ∈ P be a stationary process, and let Hp(X ) denote the entropy rate of p. Then if
Cm is a universal code for Markov-m distributions,

Ep[Rp,Cm ] ≤ Hm −Hp(X ) +
|X |m(|X | − 1)

2

log n

n
+
Km

n
,

where Hm = H(Xm+1|X1, . . . , Xm).

Note that we have a similar bound as before, except that now we have the extra term Hm −Hp(X ), which
is the extra number of bits for allowing p to be any stationary measure. Also notice that the larger m is,
the smaller the extra number of bits is. Also note that this bound is not uniform, because it depends on p.
We will discuss this further in next class.
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