Lecture 11: Universal redundancy bounds

Lecturer: Aarti Singh
Scribes: Rafael Izbicki

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

11.1 Brief review

Let \mathcal{P} be a family of probability distributions over the alphabet \mathcal{X}. Last time, we defined

$$
\bar{R}_{c}=\sup _{p \in \mathcal{P}} E_{p}\left[\frac{L\left(X^{n}\right)}{n}-\left(-\frac{\log p\left(X^{n}\right)}{n}\right)\right]
$$

to be the worst expected redundancy of a coding for a given family \mathcal{P}. We want \bar{R}_{c} to be small. We also defined

$$
R_{c}^{*}=\sup _{p \in \mathcal{P}} \max _{x^{n}}\left[\frac{L\left(x^{n}\right)}{n}-\left(-\frac{\log p\left(x^{n}\right)}{n}\right)\right]
$$

to be the worst maximum redundancy. Note that $\bar{R}_{c} \leq R_{c}^{*}$.
Later in the course, we will show that when attempting to build a universal model for the distribution of the process X^{n}, mixtures of distributions over \mathcal{P} are optimal in some sense. That is, one should estimate the distribution of the sequence as $q\left(x^{n}\right)=\sum_{p \in \mathcal{P}} \theta(p) p\left(x^{n}\right)$, where $\theta(p)$ is a prior measure probability over \mathcal{P}. Moreover, one can build efficient arithmetic coding using mixture distributions that are nearly optimal. Two examples are as follows:

Example 1 Let \mathcal{P} be the class of all i.i.d. distributions over the (finite) alphabet \mathcal{X}. Note that each distribution in this class is characterized by a vector of probabilities $\left(p_{1}, \ldots, p_{|\mathcal{X}|}\right)$. One can define the following predictive probabilities:

$$
q^{i i d}\left(x_{t}=j \mid x^{t-1}\right)=\frac{n\left(j \mid x^{t-1}\right)+\frac{1}{2}}{t-1+\frac{|\mathcal{X}|}{2}}
$$

where x^{t-1} is used to indicate the first $t-1$ characters of the string and $n\left(j \mid x^{t-1}\right)$ is the number of occurrences j in x^{t-1}, the first $t-1$ elements of the string. Today we will show that $q^{i i d}$ is a mixture over \mathcal{P} and also that $\bar{R}_{q^{i i d}} \leq \frac{|\mathcal{X}|-1}{2} \frac{\log n}{n}+\frac{K}{n}$ where $K>0$ is a constant. Here $\bar{R}_{q^{i i d}}$ is the worst expected redundancy of the arithmetic code associated with $q^{i i d}$.

Example 2 Let \mathcal{P} be the class of all m-order Markov processes over the (finite) alphabet \mathcal{X}. One can define the following predictive probabilities:

$$
q^{\text {markov }}\left(x_{t}=j \mid x^{t-1}\right)=\frac{n\left(\left(x_{t-m}^{t-1}, j\right) \mid x^{t-1}\right)+\frac{1}{2}}{n\left(x_{t-m}^{t-1} \mid x^{t-1}\right)+\frac{|\mathcal{X}|}{2}}
$$

where $n\left(\left(x_{t-m}^{t-1}, j\right) \mid x^{t-1}\right)$ is the number of counts of the subsequence $\left(x_{t-m}^{t-1}, j\right)$ in x^{t-1}. We have that $\bar{R}_{q^{\text {markov }}} \leq \frac{|\mathcal{X}|^{m}(|\mathcal{X}|-1)}{2} \frac{\operatorname{logn}}{n}+\frac{K_{m}}{n}$ where $K_{m}>0$ is a constant that depends only on m. Here $\bar{R}_{q^{\text {markov }}}$ is the worst expected redundancy of the arithmetic code associated with $q^{\text {markov }}$.

11.2 i.i.d Processes

We now develop Example 1, that is, i.i.d Processes. First, we show that $q^{i i d}$ is in fact a mixture of distribution on \mathcal{P}. Before that, let's define a Dirichlet distribution.

Definition 11.1 Let $\alpha_{1}, \ldots, \alpha_{k}>0$. Let $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \Re^{k}$ be a random vector such that its probability density function is given by

$$
\pi(\theta)=\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{i} \theta_{i}^{\alpha_{i}-1}
$$

for all θ such that $\sum \theta_{i}=1$, and 0 otherwise. We say that $\theta \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$.

Note that when $k=2$ we have a Beta distribution. Also, when all parameters $\alpha_{1}, \ldots, \alpha_{k}$ are 1 , we have a uniform distribution.

Proposition 11.2 Every i.i.d process $p \in \mathcal{P}$ defined over the finite alphabet \mathcal{X} can be associated with a vector of probabilities for each symbol $\theta=\left(p_{1}, \ldots, p_{|\mathcal{X}|}\right)$ where $\sum_{i} p_{i}=1$. Let $q^{i i d}$ be as in Example 1. Then we will show that $q^{\text {iid }}=q$, where q is the distribution of the mixture of processes $p \in \mathcal{P}$ where the mixture weights for $p \equiv \theta$ are given by the prior $\pi(\theta)$, where the prior is Dirichlet $(1 / 2, \ldots, 1 / 2)$.

Proof: Notice that we can rewrite $q^{i i d}$ as

$$
\begin{equation*}
q^{i i d}\left(x^{n}\right)=\prod_{t=1}^{n} q^{i i d}\left(x_{t} \mid x^{t-1}\right)=\prod_{t=1}^{n} \frac{n\left(j \mid x^{t-1}\right)+\frac{1}{2}}{t-1+\frac{|\mathcal{X}|}{2}}=\frac{\prod_{x \in \mathcal{X}}\left(n_{x}-\frac{1}{2}\right)\left(n_{x}-\frac{3}{2}\right) \ldots\left(\frac{1}{2}\right)}{\left(n+\frac{|\mathcal{X}|}{2}-1\right)\left(n+\frac{|\mathcal{X}|}{2}-2\right) \ldots\left(\frac{|\mathcal{X}|}{2}\right)} . \tag{11.1}
\end{equation*}
$$

The last step follows by gathering together terms that refer to the same symbol. Denoting by π the prior density of the Dirichlet distribution and by using the Law of Total Probability, we can calculate the distribution q :

$$
q\left(x^{n}\right)=\int_{p \in \mathcal{P}} p\left(x^{n}\right) \pi(p) d p=\int_{p \in \mathcal{P}} p\left(x^{n}\right) \frac{\Gamma\left(\sum_{x} \frac{1}{2}\right)}{\prod_{x} \Gamma\left(\frac{1}{2}\right)} \prod_{x} p_{x}^{\frac{1}{2}-1} d p
$$

Now, by independence, we have that $p\left(x^{n}\right)=\prod_{k=1}^{n} p\left(x_{k}\right)=\prod_{x \in \chi} p_{x}^{n_{x}}$ (we gather together term that refer to the same symbol). Hence

$$
\begin{gather*}
q\left(x^{n}\right)=\int_{p \in \mathcal{P}} \frac{\Gamma\left(\sum_{x} \frac{1}{2}\right)}{\prod_{x} \Gamma\left(\frac{1}{2}\right)} \prod_{x} p_{x}^{n_{x}+\frac{1}{2}-1} d p= \\
=\frac{\Gamma\left(\sum_{x} \frac{1}{2}\right)}{\prod_{x} \Gamma\left(\frac{1}{2}\right)} \frac{\prod_{x} \Gamma\left(n_{x}+\frac{1}{2}\right)}{\Gamma\left(\sum_{x} n_{x}+\frac{1}{2}\right)} \int_{p \in \mathcal{P}} \prod_{x} p_{x}^{n_{x}+\frac{1}{2}-1} \frac{\Gamma\left(\sum_{x} n_{x}+\frac{1}{2}\right)}{\prod_{x} \Gamma\left(n_{x}+\frac{1}{2}\right)} d p=\frac{\Gamma\left(\sum_{x} \frac{1}{2}\right)}{\prod_{x} \Gamma\left(\frac{1}{2}\right)} \frac{\prod_{x} \Gamma\left(n_{x}+\frac{1}{2}\right)}{\Gamma\left(\sum_{x} n_{x}+\frac{1}{2}\right)} \tag{11.2}
\end{gather*}
$$

where we use the fact that the integral is the integral of the density of a Dirichlet distribution over all values it assumes, and therefore is 1 . Finally, using the fact that the Gamma distribution satisfies $\Gamma(s+1)=$ $s \Gamma(s)=s(s-1) \Gamma(s-1)=\ldots$, we get that $\Gamma\left(n_{x}+\frac{1}{2}\right)=\left(n_{x}+\frac{1}{2}-1\right)\left(n_{x}+\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)$. By using this and a similar expansion to $\Gamma\left(\sum_{x} n_{x}+\frac{1}{2}\right)$, and noting that $\sum_{x} n_{x}=n$, we get from 11.2 that

$$
q\left(x^{n}\right)=\frac{\prod_{x \in \chi}\left(n_{x}-\frac{1}{2}\right)\left(n_{x}-\frac{3}{2}\right) \ldots\left(\frac{1}{2}\right)}{\prod_{x \in \chi}\left(n+\sum_{x} \frac{1}{2}\right)\left(n+\sum_{x} \frac{1}{2}-1\right) \ldots\left(\sum_{x} \frac{1}{2}\right)}
$$

which is the same as 11.1 (notice that $\sum_{x} 1=|\mathcal{X}|$).

We will now prove a proposition that shows how well arithmetic codes generated using $q^{i i d}$ are for i.i.d. sequences. But, before that, here is a usefull lemma:

Lemma 11.3 Let X_{1}, \ldots, X_{n} be i.i.d. random variables in \mathcal{X}, and denote $p_{x}=P\left(X_{i}=x\right), \forall x \in \chi$. Let $\mathcal{P}=\left\{\left(p_{x}\right)_{x \in \mathcal{X}}: \sum p_{x}=1, p_{x} \geq 0\right\}$. Then the maximum likelihood estimate for the sequence x_{1}, \ldots, x_{n} is given as

$$
\sup _{p \in \mathcal{P}} p\left(x_{1}, \ldots, x_{n}\right)=\prod_{x}\left(\frac{n_{x}}{n}\right)^{n_{x}}
$$

Proof: For any $p \in \mathcal{P}$, we have that $p\left(x_{1}, \ldots, x_{n}\right)=\prod_{x} p_{x}^{n_{x}}$. We want to find the supremum of this function with constrained to $\sum p_{x}=1$. Equivalently, we want the supremum of $\log p\left(x_{1}, \ldots, x_{n}\right)$ subject to same constraints. The Lagrangian is given by

$$
\sum_{x} n_{x} \log p_{x}+\lambda \sum_{x} p_{x}
$$

Taking the derivative and equating to zero, we get $p_{x}=-\frac{n_{x}}{\lambda}$. Plugging this into the constrains, we get $\lambda=-n$. The result follows from plugging the optimal p_{x} 's on the target function.

Proposition 11.4 Let \mathcal{P} be the set of all i.i.d. distributions over the finite alphabet \mathcal{X}. Let $q^{i i d}$ be as in Example 1. Then $\bar{R}_{q^{i i d}} \leq R_{q^{i i d}}^{*} \leq \frac{|\mathcal{X}|-1}{2} \frac{\log n}{n}+\frac{K}{n}$.

Proof: The first inequality is trivial. Now, by definition,

$$
R_{q^{i i d}}^{*}=\sup _{p \in \mathcal{P}} \max _{x^{n}} \log \left(\frac{p\left(x^{n}\right)}{q^{i i d}\left(x^{n}\right)}\right) .
$$

For each x^{n}, and any $p \in \mathcal{P}$, we have using Lemma 11.3 that

$$
p\left(x^{n}\right) \leq \sup _{p \in \mathcal{P}} p\left(x^{n}\right)=\prod_{x}\left(\frac{n_{x}}{n}\right)^{n_{x}} .
$$

We can also show that (by pairing each term on left side with a bounding term on right side, see e.g. pg 483 of Csiszar and Shields' Tutorial.):

$$
\prod_{x}\left(\frac{n_{x}}{n}\right)^{n_{x}} \leq \frac{\prod_{x}\left(n_{x}-\frac{1}{2}\right)\left(n_{x}-\frac{3}{2}\right) \ldots\left(\frac{1}{2}\right)}{\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \ldots\left(\frac{1}{2}\right)}
$$

Hence, by using this bound and also the explicit form of $q^{i i d}$ (which is in expression 11.1), we get (notice that the both numerators are the same)

$$
\begin{equation*}
\frac{p\left(x^{n}\right)}{q^{i i d}\left(x^{n}\right)} \leq \frac{\left(n+\frac{|\mathcal{X}|}{2}-1\right)\left(n+\frac{|\mathcal{X}|}{2}-2\right) \ldots\left(\frac{|\mathcal{X}|}{2}\right)}{\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \ldots\left(\frac{1}{2}\right)}=\prod_{j=1}^{n} \frac{n+\frac{|\mathcal{X}|}{2}-j}{n+\frac{1}{2}-j} \tag{11.3}
\end{equation*}
$$

Now, assuming $|\mathcal{X}|$ is even (a similar argument can be worked out if $|\mathcal{X}|$ is odd), we can rewrite 11.3 as

$$
\begin{equation*}
\frac{\left(n+\frac{|\mathcal{X}|}{2}-1\right)!/\left(\frac{|\mathcal{X}|}{2}-1\right)!}{(2 n-1)(2 n-3) \ldots 1 / 2^{n}}=\frac{\left(n+\frac{|\mathcal{X}|}{2}-1\right)!2^{n}}{\left(\frac{\mathcal{X} \mid}{2}-1\right)!(2 n-1)(2 n-3) \ldots 1} . \tag{11.4}
\end{equation*}
$$

Now, notice that $(2 n)!=(2 n)(2 n-1)(2 n-2) \ldots 1=2 n(2 n-2)(2 n-4) \ldots 2(2 n-1)(2 n-3) \ldots 1=$ $2^{n}(n-1)(n-2) \ldots 1(2 n-1)(2 n-3) \ldots 1=2^{n} n!(2 n-1)(2 n-3) \ldots 1$. Hence

$$
(2 n-1)(2 n-3) \ldots 1=\frac{(2 n)!}{2^{n} n!}
$$

Plugging this into 11.4 yields

$$
\frac{p\left(x^{n}\right)}{q^{i i d}\left(x^{n}\right)} \leq \frac{\left(n+\frac{|\mathcal{X}|}{2}-1\right)!2^{2 n} n!}{\left(\frac{\mathcal{X} \mid}{2}-1\right)!(2 n)!}
$$

Now, using Stirling's approximation to the factorial $\left(n!\approx K \sqrt{n} n^{n}\right)$, we get that

$$
\frac{p\left(x^{n}\right)}{q^{i d}\left(x^{n}\right)} \leq C n^{\frac{|\mathcal{X}|-1}{2}}
$$

By noticing that the result holds for all sequences x^{n} and all $p \in \mathcal{P}$, and by taking \log we prove the proposition.

We note that a similar argument can be done for Example 2, that is, Markov Chains.

11.3 Stationary Processes

Now, let \mathcal{P} be the class of all stationary distributions over the finite alphabet \mathcal{X}. Any distribution of this class can be approximated by a Markov process by letting the order of the Markov process $m \longrightarrow \infty$ with n. We have the following result

Proposition 11.5 Let $p \in \mathcal{P}$ be a stationary process, and let $H_{p}(\mathcal{X})$ denote the entropy rate of p. Then if C^{m} is a universal code for Markov-m distributions,

$$
E_{p}\left[R_{p, C^{m}}\right] \leq H_{m}-H_{p}(\mathcal{X})+\frac{|\mathcal{X}|^{m}(|\mathcal{X}|-1)}{2} \frac{\log n}{n}+\frac{K_{m}}{n}
$$

where $H_{m}=H\left(X_{m+1} \mid X_{1}, \ldots, X_{m}\right)$.

Note that we have a similar bound as before, except that now we have the extra term $H_{m}-H_{p}(\mathcal{X})$, which is the extra number of bits for allowing p to be any stationary measure. Also notice that the larger m is, the smaller the extra number of bits is. Also note that this bound is not uniform, because it depends on p. We will discuss this further in next class.

