10-704: Information Processing and Learning

Spring 2012

Lecture 10: Universal coding and prediction

Lecturer: Aarti Singh Scribes: Georg M. Goerg

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

10.1 Universal coding and prediction

We want an encoder that works well for any distribution $p \in \mathcal{P}$. For example, to gzip a text file we would like an encoder that works for several different languages, rather than designing a new zip code for each single language.

Shannon/Huffman codes could achieve this, but their disadvantage is that generally we have to wait for the whole sequence to arrive before beginning to encode/decode. We would like to design a code that can be encoded and decoded immediately on a symbol per symbol basis.

In this lecture we will focus on the duality between optimal coding and optimal prediction. For example, it is natural to require a code C to have short length $L_C(x)$ for the symbol x; analogously in prediction we often want to minimize a loss function $loss_q(x)$ for a predictor q. Table 10.1 gives a general overview of several dual concepts and notions of a code C and a predictor q that we will use in this (and upcoming) lectures.

10.1.1 Weak and strong universality

A code C is universal if

$$\overline{R}_C = \sup_{p \in \mathcal{P}} \mathbb{E}_p \left(R_{p,C} \right) \stackrel{n \to \infty}{\to} 0. \tag{10.1}$$

A predictor q is universally consistent if

$$\overline{R}_q = \sup_{p \in \mathcal{P}} \mathbb{E}_p \left(R_{p,q} \right) \stackrel{n \to \infty}{\to} 0. \tag{10.2}$$

Just as standard calculus has pointwise and uniform convergence (of e.g. functions), we can also differentiate between weak and strong universality:

weakly universal if the convergence rate depends on $p \in \mathcal{P}$, e.g. if $\overline{R}_C = o(n^{-\gamma_p})$ and γ_p changes for every $p \in \mathcal{P}$.

strong universal if the convergence rate is the same for all $p \in \mathcal{P}$, e.g. $\overline{R}_C = o(n^{-\gamma}) \forall p \in \mathcal{P}$.

By Kraft's inequality we know that for prefix codes

$$\sum_{x^n \in \mathcal{X}^n} 2^{-L_C(x^n)} \le 1,\tag{10.3}$$

 $^{^{1}\}mathrm{The}$ rate need not necessarily be polynomial; it just serves as an example.

C and a predictor q .	Table 10.1: Universal coding and prediction: per symbol properties of a code C and	ole 10.1: Universal coding and predi	Tal
	$=:\overline{R}_q$	$=\overline{\overline{R}}_C$	
minimax excess risk	$\min_{q} \sup_{p \in \mathcal{P}} \frac{1}{n} D_n(p q)$	$\min_{C} \sup_{p \in \mathcal{P}} \mathbb{E}_{p}\left(R_{p,C} ight)$	minimax expected redundancy a
$excess risk = \mathbb{E} excess loss$	$n(p q) \ge 0$	$\mathbb{E}_{p}\left(R_{p,C}\right) = \mathbb{E}_{p}\left(\frac{L_{C}(x^{n})}{n}\right) - \frac{H(x^{n})}{n}$ ≥ 0 for uniquely decodable codes	expected redundancy
excess loss of predictor q wrt true p	$R_{p,q} = -\frac{1}{n} \log q(x^n) - \left(-\frac{1}{n} \log p(x^n)\right)$	$R_{p,C} = \frac{L_C(x^n)}{n} - \left(-\frac{1}{n}\log p(x^n)\right)$	redundancy
likelihood under the true model p	$-\frac{1}{n}\log p(x^n)$	$-\frac{1}{n}\log p(x^n)$ (Shannon information content)	ideal code length
$\mathbb{E} ext{-loss} = \operatorname{risk}$	$-\frac{1}{n}\mathbb{E}_p\log q(x^n)$	$\mathbb{E}_p\left(rac{L_C(x)}{n} ight)$	expected length
empirical log-likelihood of the data	$-\frac{1}{n}\log q(x^n) \stackrel{\text{if } x^n \text{ iid }}{=} -\frac{1}{n}\sum_{i=1}^n \log q(x_i)$	$rac{L_C(x^n)}{n}$	code length
	Average	Properties per symbol	Prop
negative log-likelihood or self-information loss	$loss_q(x) = -\log q(x)$	$L_C(x)$	length of symbol x using code C
	predictor q	$\operatorname{code} C$	
	data $x'', x'' \sim p \in \mathcal{P}$	dat	

 a We want that the code C works well for all $p \in \mathcal{P}$.

and we can construct the corresponding predictor by

$$q(x^n) = \frac{2^{-L_C(x^n)}}{\sum_{x^n \in \mathcal{X}^n} 2^{-L_C(x^n)}} = \underbrace{k}_{\geq 1} \cdot 2^{-L_C(x^n)} \Rightarrow L_c(x^n) \geq -\log q(x^n). \tag{10.4}$$

Similarly, for any distribution $q(x^n)$ we can define a corresponding prefix code that satisfies

$$L_c(x^n) \le -\log q(x^n) + 1.$$
 (10.5)

This must be true since we know that at least the Shannon code $\left(\left\lceil \log_2 \frac{1}{q(x^n)}\right\rceil\right)$ can achieve this.

For prefix codes (see (10.1)) we have

$$\overline{R}_C \ge \min_{\substack{q \ p \in \mathcal{P}}} \sup_{n} \frac{1}{n} D_n(p||q) =: \overline{R}.$$

$$\underbrace{\text{arg min}_{\text{reg}}}_{\text{arg min} \sim \overline{q}}$$

$$(10.6)$$

Let \overline{q} be the predictor that achieves the above minimum. We can then construct a Shannon code C^* from this predictor. By (10.5) we know that \overline{R}_{C^*} will be within 1/n bit of \overline{R}_C (or within 1 bit for the entire sequence).

10.1.2 Prediction problem

We have data x^n from $p \in \mathcal{P}$. How much loss do we suffer from using $q \neq p$ instead of the true p?

Here q can be any distribution; however, typically q is an estimate of p depending on the data x^n .

In general, we have to impose some restrictions on the class of distributions \mathcal{P} to get universally consistent codes C / predictors q, i.e. to achieve error rates $\rightarrow 0$. For example, we often assume i) iid, ii) Markov chains, . . .

For a specific q consider $** \ge \overline{R}_q \ge \overline{R} \ge *$. Typically we try to bound ** and * to get control over the error rates.

Note that $\overline{q} = \arg\min_q \overline{R}_q$, where \overline{R}_q is the worst excess risk for a particular q. \overline{q} is the model/estimate q that minimizes the expected worst case scenario.

We will show later in the course that, in general, the optimal \overline{q} is a mixture distribution over the class $p \in \mathcal{P}$. In other words, for any q, \exists a mixture distribution p_{mix} such that the excess risk of q is always greater or equal to the excess risk of p_{mix} , i.e.

$$D_n(p||q) \ge D_n(p||p_{mix}). \tag{10.7}$$

10.1.3 Maximum loss instead of expected loss

Now instead of expected loss, consider the maximum loss (maximum over all possible sequences x^n)

$$R^* = \min_{q} \sup_{p \in \mathcal{P}} \max_{x^n} \frac{1}{n} \log \frac{p(x^n)}{q(x^n)}$$
(10.8)

Let $P_{ML}(x^n) = \sup_{p \in \mathcal{P}} p(x^n)$ (the MLE). Define the normalized ML as

$$NML(x^n) = \frac{P_{ML}(x^n)}{\sum_{x^n} P_{ML}(x^n)} = q^*,$$
(10.9)

under maximum-loss (instead of \mathbb{E} -loss).

The normalized maximum likelihood distribution is the best universal predictor under maximum loss.

Theorem 10.1 For any class \mathcal{P} of processes with finite alphabet

$$q^* = NML(x^n) \text{ and } R^* = \log \sum_{x^n} P_{ML}(x^n).$$
 (10.10)

For a proof, see pg 480 of Csiszar and Shield's tutorial.

10.1.3.1 Problems of NML and maximum loss for arithmetic coding

For arithmetic coding we need the conditional distribution $q(x^n \mid x^{n-1})$. But the NML distribution is not consistent in the sense that

$$q^*(x^n) \neq \sum_{x_{n+1}} q^*(x^{n+1}) \tag{10.11}$$

or equivalently

$$q^*(x_1, \dots, x_n) \neq \sum_{x_{n+1}} q^*(x_1, \dots, x_n, x_{n+1})$$
(10.12)

Remark: The right hand side in the above expressions yields a valid distribution, but it is not the distribution of x_1, \ldots, x_n under q^* . This can be seen by recalling the definition of q^* .

Thus it is not possible to define a corresponding arithmetic code (Shannon and Huffman codes are possible though).

Thus we return to consider \mathbb{E} -loss as in this case we know that q is a mixture distribution - and this is consistent in the sense that

$$q(x_1, \dots, x_n) = \sum_{x^{n+1}} q(x_1, \dots, x_n, x_{n+1}).$$
(10.13)

Examples of model classes and their optimal codes/predictors

1. \mathcal{P} is the class of iid processes with finite alphabet \mathcal{X} . It can be shown that the optimal predictor is given by

$$q(x^n) = \prod_{i=1}^n \frac{n(x_i \mid x^{i-1}) + \frac{1}{2}}{i - 1 + \frac{|\mathcal{X}|}{2}},$$
(10.14)

$$n(x_i \mid x^{i-1}) = \# \text{ of ocurrences of symbol } x_i \text{ in past } x^{i-1}.$$
 (10.15)

The term $\frac{n(x_i|x^{i-1})}{i-1}$ is simply the frequency of symbols observed before time t; the additional $\frac{+\frac{1}{2}}{+\frac{|\mathcal{X}|}{2}}$ smoothes out the ML estimate. Thus it avoids assigning 0 probability to symbols that have not occurred yet (but may occur in the future).

Let n_x be the number of times the symbol x occurred in the entire length n sequence. Then (10.14) can be rewritten as (see next lecture)

$$q(x^n) = \frac{\prod_{x \in \mathcal{X}} (n_x - \frac{1}{2})(n_x - \frac{3}{2}) \cdots \frac{1}{2}}{\left(n - 1 + \frac{|\mathcal{X}|}{2}\right) \left(n - 2 + \frac{|\mathcal{X}|}{2}\right) \cdots \frac{|\mathcal{X}|}{2}} \sim \sum_{p \in \mathcal{P}} \pi(p) \cdot p(x^n), \tag{10.16}$$

where $\pi(p) \sim Dirichlet\left(\frac{1}{2}, \dots, \frac{1}{2}\right)^2$.

One can show that (for proof see next lecture)

$$\overline{R}_q \le R_q^* \le \underbrace{\frac{|\mathcal{X}| - 1}{2} \frac{\log n}{n}}_{\text{best possible bound}} + \frac{constant}{n}.$$
(10.17)

2. \mathcal{P} is the class of Markov processes of order 1.

Let $n_{i-1}(k,j)$ be the count of how many times the sequence (k,j) appeared in the first i-1 symbols (x_1,\ldots,x_{i-1}) ; also let $n_{i-1}(k)=\sum_j n_{i-1}(k,j)$ be the total number of times the symbol k occurred in the first i-1 symbols.

$$q(x^n) = \prod_{i=1}^n q(j \mid x^{i-1}), \quad q(j \mid x^{i-1}) = \frac{n_{i-1}(k,j) + \frac{1}{2}}{n_{i-1}(k) + \frac{|\mathcal{X}|}{2}}.$$
 (10.18)

For a Markov process of order m = 1 one can show (see next lecture)

$$\overline{R}_q \le R_q^* \le \underbrace{\frac{|\mathcal{X}| (|\mathcal{X}| - 1) \log n}{2}}_{\text{best possible bound}} + \frac{constant}{n}.$$
(10.19)

3. \mathcal{P} is the class of Markov processes of order m, i.e. x_i depends on previous m steps. Then

$$q(j \mid x^{i-1}) = \frac{\text{\# times j occured preceded by } x_{i-m}^{i-1} + \frac{1}{2}}{\text{\# times } x_{i-m}^{i-1} \text{ occured } + \frac{|\mathcal{X}|}{2}}.$$
 (10.20)

Here it holds

$$\overline{R}_q \le R_q^* \le \underbrace{\frac{|\mathcal{X}|^m (|\mathcal{X}| - 1) \log n}{2} + \frac{constant_m}{n}}_{\text{best, possible bound}} + \frac{10.21}{n}$$

Again, see the next lecture for detailed derivations.

²https://en.wikipedia.org/wiki/Dirichlet_distribution