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Lecture 10: Universal coding and prediction
Lecturer: Aarti Singh Scribes: Georg M. Goerg

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

10.1 Universal coding and prediction

We want an encoder that works well for any distribution p ∈ P. For example, to gzip a text file we would
like an encoder that works for several different languages, rather than designing a new zip code for each
single language.

Shannon/Huffman codes could achieve this, but their disadvantage is that generally we have to wait for the
whole sequence to arrive before beginning to encode/decode. We would like to design a code that can be
encoded and decoded immediately on a symbol per symbol basis.

In this lecture we will focus on the duality between optimal coding and optimal prediction. For example, it is
natural to require a code C to have short length LC(x) for the symbol x; analogously in prediction we often
want to minimize a loss function lossq(x) for a predictor q. Table 10.1 gives a general overview of several
dual concepts and notions of a code C and a predictor q that we will use in this (and upcoming) lectures.

10.1.1 Weak and strong universality

A code C is universal if
RC = sup

p∈P
Ep (Rp,C)

n→∞→ 0. (10.1)

A predictor q is universally consistent if

Rq = sup
p∈P

Ep (Rp,q)
n→∞→ 0. (10.2)

Just as standard calculus has pointwise and uniform convergence (of e.g. functions), we can also differentiate
between weak and strong universality:

weakly universal if the convergence rate depends on p ∈ P, e.g. if RC = o(n−γp) and γp changes for every
p ∈ P.1

strong universal if the convergence rate is the same for all p ∈ P, e.g. RC = o(n−γ)∀p ∈ P.

By Kraft’s inequality we know that for prefix codes∑
xn∈Xn

2−LC(xn) ≤ 1, (10.3)

1The rate need not necessarily be polynomial; it just serves as an example.
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and we can construct the corresponding predictor by

q(xn) =
2−LC(xn)∑

xn∈Xn 2−LC(xn)
= k︸︷︷︸
≥1

·2−LC(xn) ⇒ Lc(x
n) ≥ − log q(xn). (10.4)

Similarly, for any distribution q(xn) we can define a corresponding prefix code that satisfies

Lc(x
n) ≤ − log q(xn) + 1. (10.5)

This must be true since we know that at least the Shannon code
(⌈

log2
1

q(xn)

⌉)
can achieve this.

For prefix codes (see (10.1)) we have

RC ≥ min
q

sup
p∈P

1

n
Dn(p||q)︸ ︷︷ ︸

argmin q

=: R. (10.6)

Let q be the predictor that achieves the above minimum. We can then construct a Shannon code C∗ from
this predictor. By (10.5) we know that RC∗ will be within 1/n bit of RC (or within 1 bit for the entire
sequence).

10.1.2 Prediction problem

We have data xn from p ∈ P. How much loss do we suffer from using q 6= p instead of the true p?

Here q can be any distribution; however, typically q is an estimate of p depending on the data xn.

In general, we have to impose some restrictions on the class of distributions P to get universally consistent
codes C / predictors q, i.e. to achieve error rates → 0. For example, we often assume i) iid, ii) Markov
chains, . . .

For a specific q consider ∗∗ ≥ Rq ≥ R ≥ ∗. Typically we try to bound ∗∗ and ∗ to get control over the error
rates.

Note that q = arg minq Rq, where Rq is the worst excess risk for a particular q. q is the model/estimate q
that minimizes the expected worst case scenario.

We will show later in the course that, in general, the optimal q is a mixture distribution over the class p ∈ P.
In other words, for any q, ∃ a mixture distribution pmix such that the excess risk of q is always greater or
equal to the excess risk of pmix, i.e.

Dn(p||q) ≥ Dn(p||pmix). (10.7)

10.1.3 Maximum loss instead of expected loss

Now instead of expected loss, consider the maximum loss (maximum over all possible sequences xn)

R∗ = min
q

sup
p∈P

max
xn

1

n
log

p(xn)

q(xn)
(10.8)
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Let PML(xn) = supp∈P p(x
n) (the MLE). Define the normalized ML as

NML(xn) =
PML(xn)∑
xn PML(xn)

= q∗, (10.9)

under maximum-loss (instead of E-loss).

The normalized maximum likelihood distribution is the best universal predictor under maximum loss.

Theorem 10.1 For any class P of processes with finite alphabet

q∗ = NML(xn) and R∗ = log
∑
xn

PML(xn). (10.10)

For a proof, see pg 480 of Csiszar and Shield’s tutorial.

10.1.3.1 Problems of NML and maximum loss for arithmetic coding

For arithmetic coding we need the conditional distribution q(xn | xn−1). But the NML distribution is not
consistent in the sense that

q∗(xn) 6=
∑
xn+1

q∗(xn+1) (10.11)

or equivalently

q∗(x1, . . . , xn) 6=
∑
xn+1

q∗(x1, . . . , xn, xn+1) (10.12)

Remark: The right hand side in the above expressions yields a valid distribution, but it is not the distribution
of x1, . . . , xn under q∗. This can be seen by recalling the definition of q∗.
Thus it is not possible to define a corresponding arithmetic code (Shannon and Huffman codes are possible
though).

Thus we return to consider E-loss as in this case we know that q is a mixture distribution - and this is
consistent in the sense that

q(x1, . . . , xn) =
∑
xn+1

q(x1, . . . , xn, xn+1). (10.13)

Examples of model classes and their optimal codes/predictors

1. P is the class of iid processes with finite alphabet X . It can be shown that the optimal predictor is
given by

q(xn) =

n∏
i=1

n(xi | xi−1) + 1
2

i− 1 + |X |
2

, (10.14)

n(xi | xi−1) = # of ocurrences of symbol xi in past xi−1 . (10.15)

The term n(xi|xi−1)
i−1 is simply the frequency of symbols observed before time t; the additional

+ 1
2

+
|X|
2

smoothes out the ML estimate. Thus it avoids assigning 0 probability to symbols that have not
occurred yet (but may occur in the future).

http://www.renyi.hu/~csiszar/Publications/Information_Theory_and_Statistics:_A_Tutorial.pdf
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Let nx be the number of times the symbol x occurred in the entire length n sequence. Then (10.14)
can be rewritten as (see next lecture)

q(xn) =

∏
x∈X (nx − 1

2 )(nx − 3
2 ) · · · 12(

n− 1 + |X |
2

)(
n− 2 + |X |

2

)
· · · |X |2

∼
∑
p∈P

π(p) · p(xn), (10.16)

where π(p) ∼ Dirichlet
(
1
2 , . . . ,

1
2

)
.2

One can show that (for proof see next lecture)

Rq ≤ R∗q ≤
|X | − 1

2

log n

n︸ ︷︷ ︸
best possible bound

+
constant

n
. (10.17)

2. P is the class of Markov processes of order 1.

Let ni−1(k, j) be the count of how many times the sequence (k, j) appeared in the first i− 1 symbols
(x1, . . . , xi−1); also let ni−1(k) =

∑
j ni−1(k, j) be the total number of times the symbol k occurred in

the first i− 1 symbols.

q(xn) =

n∏
i=1

q(j | xi−1), q(j | xi−1) =
ni−1(k, j) + 1

2

ni−1(k) + |X |
2

. (10.18)

For a Markov process of order m = 1 one can show (see next lecture)

Rq ≤ R∗q ≤
|X | (|X | − 1)

2

log n

n︸ ︷︷ ︸
best possible bound

+
constant

n
. (10.19)

3. P is the class of Markov processes of order m, i.e. xi depends on previous m steps. Then

q(j | xi−1) =
# times j occured preceeded by xi−1i−m + 1

2

# times xi−1i−m occured + |X |
2

. (10.20)

Here it holds

Rq ≤ R∗q ≤
|X |m (|X | − 1)

2

log n

n︸ ︷︷ ︸
best possible bound

+
constantm

n
. (10.21)

Again, see the next lecture for detailed derivations.

2https://en.wikipedia.org/wiki/Dirichlet_distribution

https://en.wikipedia.org/wiki/Dirichlet_distribution
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