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1 Problem Set-up
e Let P = {Py}yco be a set of distributions parametrized by § € © C H, with support X
e We define an estimator to be a function § : X™ — ©

Definition 1. The minimax risk of estimating 6 € © is

inf sup Ep, [d(6(X),6)]
6 6p€O

Where X = (X1, ..., X,,) are the data and are drawn iid from Py, .
Remark:
o The risk R(A(X),6p) is defined to be Ep, [d(A(X),0p)].
e If we fix an estimator 6, then sup, oco Ep, [d (0(X),6p)] is the worst-case risk for that particular estimator
e This is a difficult problem; we have to minimize over ALL estimators!
To tame this beast of a problem, we used a strategy with two steps:
1. Choose a set of discrete estimators, a finite subset of P; discretize the loss function d(6(X), 6;).
2. When everything is finite and discrete, apply information theory (Fano’s Inequality)

Remark: Estimator 6 is a function that takes data X and outputs an estimate. If X is random, then é(X )
could be random as well. We will sometimes abuse vocabulary and refer to both the data-independent function
6 and the data dependent estimate 6(X) as an estimator

The main theorem we will prove is the following:

Theorem 2. Let O be the whole space of parameters; let ©ppire be a finite subset. Let o = min d(8;,0x),

j¢k§9j 0k e@ﬁm‘le
and let 8 = max KL(Py,,Py,). Let L be the size of Oire. Then:
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2 Reduction to Finite Discrete Case

It is easy to justify that we can take a finite subset of P: for a fixed estimator 6:

sup R(0(X),00) > max R((X),0;)
0p€O© 91 € Ofinite

where Ogpice is a finite subset of ©. Since for all estimators, finitizing © gives a lower bound on the worst-
case risk, it also gives a lower bound for minimax risk. Let Ogpie = {61, ..., 01, }.

Let Z(X) = arg mén d((X), ) be a random variable whose distribution is dependent on the data
€

finite

and on the estimator. Note that Z is a discrete function of the data, it takes data and outputs a discrete
estimate; if the data is random, Z (X)) is a multinomial.

Define o = min d(9;,0x).
J#k;05,01 €Ofinite

Fix true distribution and let it be Py,. If Z(X) = j, then d(A(X),6,) could only be lower bounded by 0; if
Z(X) # j, then d((X), 6;) could be lower bounded by $ by triangle inequality.

Hence, for a fixed estimator and for a fixed true 60;:
A . « .
Epy, [d(0(X),6;)] 2 0- Py, (Z(X) = j) + 5 P, (Z(X) # j)
Since this inequality hold for any fixed true 6;:

pmax Er, [d(6(X),0;)] > erélgii.ﬁpe (Z(X) #J)

And finally, since the inequality immediately above hold for any fixed estimator o:

) > gy j
inf max Ep, [d(6(X), 0;)] inf max 2P9J(Z(X) # J)

Notice that with these manuevers, we have effectively replaced the loss d(6(X), 0;) with § Py (Z(X) # 7)

Let’s consider RHS inf gmgx EPQ (Z(X) # 7). We can lower bound this by taking infimum over all
0 € Ofinite

discrete valued functions of the data: Z = {Z : Z is discrete function of data}.
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In summary, we have the bound:

inf sup Ep, [d(é(X) to)] >
N
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On the RHS, we have a lower bound in which replaced original © with Ogye, the original inf ¢ with inf over
a space of discrete estimators, and replaced the original loss function.



3 Information Inequalities

Now, our goal is to lower bound:
inf Py (Z(X j
L max Fo (20 #£3)

Fix estimator Z. We are going to get a lower bound by expanding our probability space a little and define a
prior over the possible true parameters. Thus, we will analyze a probability space where

Y ~ Uniform Multinomial
X|Y ~ Py,

and Z is a function of the data X.

More explicitly, let Y be a multinomial random variable uniform among {1, ..., L}, then

L
Jmax Py (Z(X) # ) > ig_jpejw(X) £5)
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7)Po; (Z(X) # 7)

L
2N P(Y =j)P(Z(X) # Y =)

P(Z(X) £ V)
Where we have also represented distribution P, (-) as a conditional distribution P(-|Y" = j).

We must now lower bound P(Z(X) # Y') where P is probability induced by {Py,, ..., Py, } and the uni-
form prior Y, and Z(X) is a discrete estimate of Y based on the data generated from Fyp,, .

The distribution { Py, , ..., Py, } can be arbitrary so is an lower bound even posssible? We will give two
intuition that show the lower bound, though difficult, is possible.

1. On one hand, suppose FPy,’s are all the same, then the data X says nothing about ¥ and any estimate
Z(X) of Y cannot do better than random guess. Thus P(Z(X) # Y) > &L,

2. On the other hand, suppose P, have disjoint support, then data X reveals everything about ¥ and
P(Z(X) #Y) > 0is the tightest lower bound we can get.

3. If Py,’s are between the two extremes, then the lower bound for P(Z(X) # Y') should also vary from
L—1
=100
T

Intuitively, the data X carries information about Y and the more distinct the ng ’s are, the more information
X carries. We will formalize this notion of information and lower bound the probability of error by a function
of the information.



3.1 Entropy

Definition 3. We need at least log IV bits to encode N distinct objects. We will say that a collection of N
distinct objects has log IV bits of information.

Definition 4. Let p be the density of a distribution, we define entropy of p to be H(p) = — [ p(x) log p(x)dz.
If p is finite and discrete taking on values among {1, ..., K}, then H(p) = — Zk:ﬂ?k log px, where py, is
probability of value k.

Larger entropy means the distribution contains more information. We can interpret entropy as the average
number of bits to encode a sample from distribution p. Why?

Consider the case where p is multinomial with probabilities p1, ..., px. Suppose we drawn X1, ..., X, ~ p.
As n gets very very large, we know that with overwhelming probability, we will expect to see np;, samples with
value k.

Hence, although the support of X1,..., X, 1s the set of all length n K -ary string (with size K™), its effective
support has size ( ik everything outside of effective support has negligibly

np1inpz;.inpr) (nm)'(npz) (npK
small probability.
How many bits at minimum does it take to encode (npl _np:_“_npK) objects?
n
log ( ) = logn! —log(np1)! — ... — log(npk)!
npi;np2;...;NPK
=nlogn — (np1) log(np1) — ... — (npk ) log(npx)
=n((p1 + ... + px)logn — p1log(np1) — ... — pr log(npk))

n n
=n(p;log— + ... + px log—

np1 npx
=nH (p)

Where we used Stirling’s approximation log n! = nlogn —n + % log(27n) for large n on the second equality.
Since it takes at least n.H (p) bits to encode n samples for large n, we see that H (p) is the asymptotic number
of bits required to encode one sample from distribution p.

Abusing notation again, if X is a random variable, we will use H (X)) to denote the entropy of the distribu-
tion of X.

Definition 5. Let X, Y be random variables, the conditional entropy H (X |Y = y) is the entropy of the distribu-
tion of X' on condition that Y = y. The overall conditional entropy H (X[Y) = >_ p(Y = y)H(X|Y = y)

We can interpret H(X|Y) as, given a pair of samples (X,Y), if you can see Y and use any information in
Y, how many bits to do you need to encode X.
To get some more intuition about entropy, the following are true:

e H(X) also measures amount of randomness in X
e For bernoulli X, H(X) is maximized at 1 when P(X = 1) = P(X = 0)
o If X is non-random, H(X) =0



e If X, Y are independent, H(X,Y) = H(X)+ H(Y)
e More generally, H(X,Y) = HX|Y)+ H(Y)

3.2 Fano’s Inequality

Theorem 6. Let Y be a multinomial with values {1, ...,L}. Let {Py, ..., P} be a set of distributions and let
X|Y be drawn from Py. Let Z be a discrete function of X so that Z (X)) is a multinomial with values {1, ..., L}.

Let E be an error indicator, E =1if Z(X) #Y, 0 else

HY|X)<PE=1)log(L-1)+ H(E)
< PE=1)log(L—1)+log2
<PE=1logL+1

and hence
HY|X)-1

P(Z(X) #Y) 2 =

We give a proof intuition here. Suppose we have data X and we would like to use X to encode the effective
support of Y. One encoding scheme is to use Z(X) and first encode error indicator E. If E = 0, we can just
read Y off of Z(X) and require no additional bits. If E = 1, then we still need to encode Y. More precisely,

H(Y|X)=P(E=1)H(Y|X,E=1)+ H(E)

H(Y|X,E = 1) is upper bounded by log(L — 1) and H(FE) is upper bounded by 1 and we get the result as
desired.
To get a better intuition, we consider two cases again:

e Given data X, if we know that there exist a very accurate estimator Z(X), then Y| X cannot be too
random and we have an upper bound constraint on H (Y| X).

e If we know H(Y|X) is very high, then Y| X is highly random, and there cannot exist a very accurate
estimator. Hence we have a lower bound constraint on P(Z(X) #Y)

To complete the proof of our overall theorem, we just need to upper bound H (Y| X)
H(Y|X) = H(Y) - I(Y; X)

L
1 _
=logL — + > KL(Py,,P)

j=1
1 N
=logL — Z KL(Py,, Py,)
7,k
>logL—f8

Where I(Y’; X) is the mutual informationed defined as I(X,Y) = >_,  p(z,y)log pfgz’fézl). For us, it is

also convenient to note that p(z,y) = p(z|y)p(y) and use an equivalent form I(Y; X) = > p(y) >, p(z|y) log

p(zly)

p(z) *



