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1 Reproducing Kernel Hilbert Space (RKHS)

Let Ly(X) be the set of all functions f : X — R that are square-integrable; that is, [ |f(z)[*dz < co. X is
the data-space, usually R?. In short, RKHS is a subset of Lo (X).

More specifically, if we think of functions as a continuous vector, then RKHS is a set of functions with a
special inner product, and this inner product is associated with a kernel.

We will first define a kernel and then define RKHS.
Definition 1. A Kernel is a function K : X x X — R such that
1. itis symmetric: K(z,y) = K(y,x).
2. positive semi-definite (often just referred to as “positive definite”): V1, ..., z, € X, the n X n matrix K
where K; ; = K (z;, x;) is positive semi-definite

Note that this definition of positive semi-definiteness is equivalent to saying that | K (x,y)f(x)f(y)dxdx >
0 for all square-integrable function f.

Defining RKHS is tricky; we will start out with an initial set of special functions and then add more func-
tions to the initial set in a process called completion to get the final RKHS:

Definition 2. Let K, denote a function X — R such that K, (z) = K(z;, ).
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The norm (distance) induced by this inner product is:
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A Cauchy sequence is an infinite sequence of functions { f1, fa,...} C Hg such that || f,, — fn+1]|x goes to
0 as n goes to infinity. All such sequences have a limit in Lo (X'), although the limit might not be in H,.

To complete the space, we will include the limits of all the Cauchy sequences. There are technical issues:

1. f € H, can be represented in multiple ways, we must ensure (f, g) will not change value if we change
representation of f.
2. We will have expand definition of inner product to handle Cauchy-sequence limits

An important characteristics of RKHS is the Reproducing Property:
Proposition 3. (Reproducing Property)

o (K, Ky)x = K(x,y)

o Let f € Hy, then (f, K;)k = f(z)

1.1 Connection to Discrete Vector Space

If we think of a function f as a continuous vector where f(x) is accessing the x-th position of the vector, then
a positive semi-definite Kernel is similar to a positive semi-definite matrix.

In the following example, we will denote u, v € RP and M € RP*P,
Muv is a vector and (Mv)(i) = >~ M; jv;. Similarly, g(y) = [, K(z,y)f(z)dz is a function.

However, we cannot stretch out the analogy too far; the inner product for discrete vector space (u,v) =
>, u(i)v(i) has a special form the relates to matrix multiplication. The inner product we define for RKHS is
more abstract; it is not at all similar to (u, v) and it is not directly related to “continuous matrix multiplication”.

2 Kernel As a Measure of Similarity

We will now present Kernels in a different way - the way that you probably first learned it.

Given a data point x € X', we can define a feature map ® : X' — F where F is the feature space, a
discrete possibly infinite-dimensional vector space. We call ®(x) the feature vector.

For example, suppose a data © = (1, 22, 3) is a 3-dimensional vector, then we can define a polynomial
feature map:
2,2 2
(I)(I) = (1’1, T2,T3,T1, Ly, T3, \/59315527 \[21:21'37 \/51’1583)

The feature space is 9-dimensional, and comprises monomials of degree at most 2.

The Kernel then is defined to be K (x,y) = (®(x), P(y)). Intuitively, we think of K (x,y) as a measure of
similarity between data x and y. In SVM, using feature map and kernels allow you to create non-linear decision



boundaries.
All Feature Maps induce PSD kernels but the feature map is impractical if the kernel is not easy to compute.

Conversely, all PSD kernels also define a feature map.

Theorem 4. (Mercer’s Theorem) Suppose K is a symmetric positive semi-definite Kernel. Then there exist a set
of orthonormal eigen-functions {1; : X — R},;=1,._n (N possibly infinity) and a set of eigenvalues \; > 0
such that

N
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o K(z,y) =Y 00y Ny ()15 (y)

Definition 5. Let K be a symmetric positive semi-definite Kernel with eigenvalues A\; > Ay > ...A\y and
eigenfunctions {t; };=1,.. ~ (IV again could be infinity).

Then define a Feature Map ® : X — R” as

() = (VM1 (), V2d2 (@), o VAN N (2))

Using the standard inner product on RY, we see that
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= K(Z‘,y)

2.1 Support Vector Machine
Recall that in SVM, the dual optimization is:
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The kernelized version is:
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Recall that with optimal «;’s, the resulting decision function is of the form
f(a) = sign(d _ cwyiK (z, ;) — b)
i=1

Optimizing the kernelized SVM is equivalent to searching in the corresponding RKHS for a function to use
as classifier.



Notice that Zl oYy K (2, 25) = 2TKz where z; = a;y;. Since K is positive semi-definite, it is easy
to show that the optimization in «; is convex.

However, if we used a generic similarity function S(z, y) that is not symmetric positive semi-definite, then
the resulting optimization need not be convex.
To summarize:

o Every feature map defines a PSD Kernel and every PSD Kernel defines a feature map

e We can think of Kernels as similarity functions but the PSD property separates them from generic simi-
larity functions and makes them more useful.

e Performing the kernel trick is similar to working in RKHS.

2.2 Examples

e Homogenous Polynomial Kernel K (z,y) = (z,y)"
Feature Map ®(x) all monomial of degree r formed by coordinates of x

e Inhomogeneous Polynomial Kernel K (z,y) = ({(z,y) + 1)"
Feature map ®(x) all monomials of degree r or less formed by coordinates of z

e Radial Basis Kernel K (z,y) = exp(LEyHZ)

Feature map ®(z) basis polynomials of gll degrees (infinite dimensional)

o String Kernel

3 Representer Theorem

A seemingly different way to motivate Kernels is regularized risk minimization. The key is the representer
theorem:

Theorem 6. (Representer Theorem) Let (X1,Y1), ..., (Xn, Yn) be n data. Let ¢ : (X x Y)" — R be an arbi-
trary loss function. Let 2 : [0,00) — R be a strictly monotonically increasing function.

Let Hy be a RKHS with PSD kernel K, then

arg min c((f(X1),¥1), .., (f(Xn), ¥n)) + Q(|Iflx)

has the form f = >"1" | a; K,

Hence, as in the case with SVM, to optimize over RKHS, we only need to optimize over the a;’s.



