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1 Reproducing Kernel Hilbert Space (RKHS)
Let L2(X ) be the set of all functions f : X → R that are square-integrable; that is,

∫
x
|f(x)|2dx < ∞. X is

the data-space, usually Rd. In short, RKHS is a subset of L2(X ).

More specifically, if we think of functions as a continuous vector, then RKHS is a set of functions with a
special inner product, and this inner product is associated with a kernel.

We will first define a kernel and then define RKHS.

Definition 1. A Kernel is a function K : X × X → R such that

1. it is symmetric: K(x, y) = K(y, x).

2. positive semi-definite (often just referred to as “positive definite”): ∀x1, ..., xn ∈ X , the n× n matrix K
where Ki,j = K(xi, xj) is positive semi-definite

Note that this definition of positive semi-definiteness is equivalent to saying that
∫
x,y

K(x, y)f(x)f(y)dxdx ≥
0 for all square-integrable function f .

Defining RKHS is tricky; we will start out with an initial set of special functions and then add more func-
tions to the initial set in a process called completion to get the final RKHS:

Definition 2. Let Kxj
denote a function X → R such that Kxj

(x) = K(xj , x).

H0 =
{
f =

k∑
j=1

αjKxj |xj ∈ X , αj ∈ R, k ∈ N}

Let f =
∑k
j=1 αjKxj

and let g =
∑m
j=1 βjKyj , then define a new inner product:

〈f, g〉K =

k∑
i=1

m∑
j=1

αiβjK(xi, yj)
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The norm (distance) induced by this inner product is:

||f ||K =

√√√√ k∑
i=1

k∑
j=1

αiαjK(xi, xj)

A Cauchy sequence is an infinite sequence of functions {f1, f2, ...} ⊂ H0 such that ||fn − fn+1||K goes to
0 as n goes to infinity. All such sequences have a limit in L2(X ), although the limit might not be inH0.

To complete the space, we will include the limits of all the Cauchy sequences. There are technical issues:

1. f ∈ H0 can be represented in multiple ways, we must ensure 〈f, g〉 will not change value if we change
representation of f .

2. We will have expand definition of inner product to handle Cauchy-sequence limits

An important characteristics of RKHS is the Reproducing Property:

Proposition 3. (Reproducing Property)

• 〈Kx,Ky〉K = K(x, y)

• Let f ∈ H0, then 〈f,Kx〉K = f(x)

1.1 Connection to Discrete Vector Space
If we think of a function f as a continuous vector where f(x) is accessing the x-th position of the vector, then
a positive semi-definite Kernel is similar to a positive semi-definite matrix.

In the following example, we will denote u, v ∈ Rp and M ∈ Rp×p.
Mv is a vector and (Mv)(i) =

∑
jMi,jvj . Similarly, g(y) =

∫
x
K(x, y)f(x)dx is a function.

However, we cannot stretch out the analogy too far; the inner product for discrete vector space 〈u, v〉 =∑
i u(i)v(i) has a special form the relates to matrix multiplication. The inner product we define for RKHS is

more abstract; it is not at all similar to 〈u, v〉 and it is not directly related to “continuous matrix multiplication”.

2 Kernel As a Measure of Similarity
We will now present Kernels in a different way - the way that you probably first learned it.

Given a data point x ∈ X , we can define a feature map Φ : X → F where F is the feature space, a
discrete possibly infinite-dimensional vector space. We call Φ(x) the feature vector.

For example, suppose a data x = (x1, x2, x3) is a 3-dimensional vector, then we can define a polynomial
feature map:

Φ(x) = (x1, x2, x3, x
2
1, x

2
2, x

2
3,
√

2x1x2,
√

2x2x3,
√

2x1x3)

The feature space is 9-dimensional, and comprises monomials of degree at most 2.

The Kernel then is defined to be K(x, y) = 〈Φ(x),Φ(y)〉. Intuitively, we think of K(x, y) as a measure of
similarity between data x and y. In SVM, using feature map and kernels allow you to create non-linear decision
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boundaries.

All Feature Maps induce PSD kernels but the feature map is impractical if the kernel is not easy to compute.

Conversely, all PSD kernels also define a feature map.

Theorem 4. (Mercer’s Theorem) SupposeK is a symmetric positive semi-definite Kernel. Then there exist a set
of orthonormal eigen-functions {ψj : X → R}j=1,...,N (N possibly infinity) and a set of eigenvalues λj > 0
such that

•
∑N
j=1 λj <∞

• K(x, y) =
∑N
j=1 λjψj(x)ψj(y)

Definition 5. Let K be a symmetric positive semi-definite Kernel with eigenvalues λ1 ≥ λ2 ≥ ...λN and
eigenfunctions {ψj}j=1,...,N (N again could be infinity).

Then define a Feature Map Φ : X → RN as

Φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), ...,

√
λNψN (x))

Using the standard inner product on RN , we see that

〈Φ(x),Φ(y)〉 =

N∑
j=1

λjψj(x)ψj(y)

= K(x, y)

2.1 Support Vector Machine
Recall that in SVM, the dual optimization is:

max
α1,...,αn

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj〈xi, xj〉

The kernelized version is:

max
α1,...,αn

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj〈Φ(xi),Φ(xj)〉 = max
α1,...,αn

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj)

Recall that with optimal αi’s, the resulting decision function is of the form

f(x) = sign(

n∑
i=1

αiyiK(x, xi)− b)

Optimizing the kernelized SVM is equivalent to searching in the corresponding RKHS for a function to use
as classifier.
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Notice that
∑
i,j αiαjyiyjK(xi, xj) = zTKz where zi = αiyi. Since K is positive semi-definite, it is easy

to show that the optimization in αi is convex.

However, if we used a generic similarity function S(x, y) that is not symmetric positive semi-definite, then
the resulting optimization need not be convex.

To summarize:

• Every feature map defines a PSD Kernel and every PSD Kernel defines a feature map

• We can think of Kernels as similarity functions but the PSD property separates them from generic simi-
larity functions and makes them more useful.

• Performing the kernel trick is similar to working in RKHS.

2.2 Examples
• Homogenous Polynomial Kernel K(x, y) = 〈x, y〉r

Feature Map Φ(x) all monomial of degree r formed by coordinates of x

• Inhomogeneous Polynomial Kernel K(x, y) = (〈x, y〉+ 1)r

Feature map Φ(x) all monomials of degree r or less formed by coordinates of x

• Radial Basis Kernel K(x, y) = exp(−||x−y||2σ2 )
Feature map Φ(x) basis polynomials of all degrees (infinite dimensional)

• String Kernel

3 Representer Theorem
A seemingly different way to motivate Kernels is regularized risk minimization. The key is the representer
theorem:

Theorem 6. (Representer Theorem) Let (X1, Y1), ..., (Xn, Yn) be n data. Let c : (X × Y)n → R be an arbi-
trary loss function. Let Ω : [0,∞)→ R be a strictly monotonically increasing function.

LetHK be a RKHS with PSD kernel K, then

arg min
f∈HK

c((f(X1), Y1), ..., (f(Xn), Yn)) + Ω(||f ||K)

has the form f =
∑m
i=1 αiKxi

Hence, as in the case with SVM, to optimize over RKHS, we only need to optimize over the αi’s.
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