SML Recitation Notes Week 10: Kernels

Min Xu

March 31, 2011

1 Reproducing Kernel Hilbert Space (RKHS)

Let $L_2(\mathcal{X})$ be the set of all functions $f: \mathcal{X} \to \mathbb{R}$ that are square-integrable; that is, $\int_x |f(x)|^2 dx < \infty$. \mathcal{X} is the data-space, usually \mathbb{R}^d . In short, RKHS is a subset of $L_2(\mathcal{X})$.

More specifically, if we think of functions as a continuous vector, then RKHS is a set of functions with a special inner product, and this inner product is associated with a kernel.

We will first define a kernel and then define RKHS.

Definition 1. A Kernel is a function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that

- 1. it is symmetric: K(x, y) = K(y, x).
- 2. positive semi-definite (often just referred to as "positive definite"): $\forall x_1, ..., x_n \in \mathcal{X}$, the $n \times n$ matrix \mathbb{K} where $\mathbb{K}_{i,j} = K(x_i, x_j)$ is positive semi-definite

Note that this definition of positive semi-definiteness is equivalent to saying that $\int_{x,y} K(x,y) f(x) f(y) dx dx \ge 0$ for all square-integrable function f.

Defining RKHS is tricky; we will start out with an initial set of special functions and then add more functions to the initial set in a process called **completion** to get the final RKHS:

Definition 2. Let K_{x_j} denote a function $\mathcal{X} \to \mathbb{R}$ such that $K_{x_j}(x) = K(x_j, x)$.

$$\mathcal{H}_0 = \left\{ f = \sum_{j=1}^k \alpha_j K_{x_j} | x_j \in \mathcal{X}, \alpha_j \in \mathbb{R}, k \in \mathbb{N} \right\}$$

Let $f = \sum_{j=1}^k \alpha_j K_{x_j}$ and let $g = \sum_{j=1}^m \beta_j K_{y_j}$, then define a new inner product:

$$\langle f, g \rangle_K = \sum_{i=1}^k \sum_{j=1}^m \alpha_i \beta_j K(x_i, y_j)$$

The norm (distance) induced by this inner product is:

$$||f||_K = \sqrt{\sum_{i=1}^k \sum_{j=1}^k \alpha_i \alpha_j K(x_i, x_j)}$$

A Cauchy sequence is an infinite sequence of functions $\{f_1, f_2, ...\} \subset \mathcal{H}_0$ such that $||f_n - f_{n+1}||_K$ goes to 0 as n goes to infinity. All such sequences have a limit in $L_2(\mathcal{X})$, although the limit might not be in \mathcal{H}_0 .

To complete the space, we will include the limits of all the Cauchy sequences. There are technical issues:

- 1. $f \in \mathcal{H}_0$ can be represented in multiple ways, we must ensure $\langle f, g \rangle$ will not change value if we change representation of f.
- 2. We will have expand definition of inner product to handle Cauchy-sequence limits

An important characteristics of RKHS is the Reproducing Property:

Proposition 3. (Reproducing Property)

- $\langle K_x, K_y \rangle_K = K(x, y)$
- Let $f \in \mathcal{H}_0$, then $\langle f, K_x \rangle_K = f(x)$

1.1 Connection to Discrete Vector Space

If we think of a function f as a continuous vector where f(x) is accessing the x-th position of the vector, then a positive semi-definite Kernel is similar to a positive semi-definite matrix.

In the following example, we will denote $u,v\in\mathbb{R}^p$ and $M\in\mathbb{R}^{p\times p}$. Mv is a vector and $(Mv)(i)=\sum_j M_{i,j}v_j$. Similarly, $g(y)=\int_x K(x,y)f(x)dx$ is a function.

However, we cannot stretch out the analogy too far; the inner product for discrete vector space $\langle u, v \rangle = \sum_i u(i)v(i)$ has a special form the relates to matrix multiplication. The inner product we define for RKHS is more abstract; it is not at all similar to $\langle u, v \rangle$ and it is not directly related to "continuous matrix multiplication".

2 Kernel As a Measure of Similarity

We will now present Kernels in a different way - the way that you probably first learned it.

Given a data point $x \in \mathcal{X}$, we can define a **feature map** $\Phi : \mathcal{X} \to \mathcal{F}$ where \mathcal{F} is the **feature space**, a discrete possibly infinite-dimensional vector space. We call $\Phi(x)$ the feature vector.

For example, suppose a data $x = (x_1, x_2, x_3)$ is a 3-dimensional vector, then we can define a polynomial feature map:

$$\Phi(x) = (x_1, x_2, x_3, x_1^2, x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_2x_3, \sqrt{2}x_1x_3)$$

The feature space is 9-dimensional, and comprises monomials of degree at most 2.

The Kernel then is defined to be $K(x,y) = \langle \Phi(x), \Phi(y) \rangle$. Intuitively, we think of K(x,y) as a measure of similarity between data x and y. In SVM, using feature map and kernels allow you to create non-linear decision

boundaries.

All Feature Maps induce PSD kernels but the feature map is impractical if the kernel is not easy to compute.

Conversely, all PSD kernels also define a feature map.

Theorem 4. (Mercer's Theorem) Suppose K is a symmetric positive semi-definite Kernel. Then there exist a set of orthonormal eigen-functions $\{\psi_j: \mathcal{X} \to \mathbb{R}\}_{j=1,\dots,N}$ (N possibly infinity) and a set of eigenvalues $\lambda_j > 0$ such that

- $\sum_{j=1}^{N} \lambda_j < \infty$
- $K(x,y) = \sum_{j=1}^{N} \lambda_j \psi_j(x) \psi_j(y)$

Definition 5. Let K be a symmetric positive semi-definite Kernel with eigenvalues $\lambda_1 \geq \lambda_2 \geq ...\lambda_N$ and eigenfunctions $\{\psi_j\}_{j=1,...,N}$ (N again could be infinity).

Then define a Feature Map $\Phi: \mathcal{X} \to \mathbb{R}^N$ as

$$\Phi(x) = (\sqrt{\lambda_1}\psi_1(x), \sqrt{\lambda_2}\psi_2(x), ..., \sqrt{\lambda_N}\psi_N(x))$$

Using the standard inner product on \mathbb{R}^N , we see that

$$\langle \Phi(x), \Phi(y) \rangle = \sum_{j=1}^{N} \lambda_j \psi_j(x) \psi_j(y)$$

= $K(x, y)$

2.1 Support Vector Machine

Recall that in SVM, the dual optimization is:

$$\max_{\alpha_1, \dots, \alpha_n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

The kernelized version is:

$$\max_{\alpha_1, \dots, \alpha_n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle \Phi(x_i), \Phi(x_j) \rangle = \max_{\alpha_1, \dots, \alpha_n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

Recall that with optimal α_i 's, the resulting decision function is of the form

$$f(x) = sign(\sum_{i=1}^{n} \alpha_i y_i K(x, x_i) - b)$$

Optimizing the kernelized SVM is equivalent to searching in the corresponding RKHS for a function to use as classifier.

Notice that $\sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j) = z^\mathsf{T} \mathbb{K} z$ where $z_i = \alpha_i y_i$. Since \mathbb{K} is positive semi-definite, it is easy to show that the optimization in α_i is convex.

However, if we used a generic similarity function S(x,y) that is not symmetric positive semi-definite, then the resulting optimization need not be convex.

To summarize:

- Every feature map defines a PSD Kernel and every PSD Kernel defines a feature map
- We can think of Kernels as similarity functions but the PSD property separates them from generic similarity functions and makes them more useful.
- Performing the kernel trick is similar to working in RKHS.

2.2 Examples

- Homogenous Polynomial Kernel $K(x,y) = \langle x,y \rangle^r$ Feature Map $\Phi(x)$ all monomial of degree r formed by coordinates of x
- Inhomogeneous Polynomial Kernel $K(x,y) = (\langle x,y \rangle + 1)^r$ Feature map $\Phi(x)$ all monomials of degree r or less formed by coordinates of x
- Radial Basis Kernel $K(x,y)=\exp(\frac{-||x-y||_2}{\sigma^2})$ Feature map $\Phi(x)$ basis polynomials of all degrees (infinite dimensional)
- String Kernel

3 Representer Theorem

A seemingly different way to motivate Kernels is regularized risk minimization. The key is the representer theorem:

Theorem 6. (Representer Theorem) Let $(X_1, Y_1), ..., (X_n, Y_n)$ be n data. Let $c : (\mathcal{X} \times \mathcal{Y})^n \to \mathbb{R}$ be an arbitrary loss function. Let $\Omega : [0, \infty) \to \mathbb{R}$ be a strictly monotonically increasing function.

Let \mathcal{H}_K be a RKHS with PSD kernel K, then

$$\arg \min_{f \in \mathcal{H}_K} c((f(X_1), Y_1), ..., (f(X_n), Y_n)) + \Omega(||f||_K)$$

has the form $f = \sum_{i=1}^{m} \alpha_i K_{x_i}$

Hence, as in the case with SVM, to optimize over RKHS, we only need to optimize over the α_i 's.