
Homework 3 Solution

1. (a)

E(θ̂j − thetaj) = E

(
1

n

n∑
i=1

m(xi)ψj(xi) + εiψj(xi)− θj

)

=
1

n

n∑
i=1

m(xi)ψj(xi)−
∫ 1

0

m(xi)ψj(xi)dx

Where we used linearity of expectation and the fact that εi is the only random quantity,
and it has mean 0.

We can lower bound the integral by breaking the region into n blocks, each of length 1/n,
and replacing each term with the minimum value that that term takes on its interval,
multiplied by the width of the interval. We’ll upper bound the first term by taking the
max over each interval. I.e. we can bound the last expression by:

1

n

n∑
i=1

m(xi)ψj(xi)−
∫ 1

0

m(xi)ψj(xi)dx ≤
1

n

n∑
i=1

(
max

i−1
n
≤z≤ i

n

m(z)ψj(z)− min
i−1
n
≤y≤ i

n

m(y)ψj(y)

)
For brevity suppose that zi achieves the maximum on the ith interval and yi achieves
the minimum on the ith interval. Then we are interested in bounding m(zi)ψj(zi) −
m(yi)ψj(yi). First, we can add and subtract m(zi)ψj(yi) to get:

m(zi)ψj(zi)−m(zi)ψj(yi) +m(zi)ψj(yi)−m(yi)ψj(yi)

= m(zi) (ψj(zi)− ψj(yi)) + ψj(yi) (m(zi)−m(yi))

Our goal is to derive a bound for this expression, and we want to show that this expres-
sion decays at the rate O( 1√

n
), which will give us the correct rate at the end. First, we

notice that ψj(yi) is upper bounded by
√

2. Moreover, using Cauchy-Schwarz, we can
show that m(zi) is upper bounded:

m(zi) =
∞∑
j=1

θjψj(zi) ≤
√

2
∞∑
j=1

θj =
√

2
∞∑
j=1

θjj
β

jβ

≤
√

2

√√√√ ∞∑
j=1

θ2j j
2β

∞∑
j=1

1

j2β

≤
√
Cπ2

3

Where in the first line, we used that each ψj(zi) is upper bounded by
√

2. In the second
line we just used Cauchy-Schwarz and in the third line, we used the condition placed on
Θ and also that

∑∞
j=1

1
j2

= π2

6
and that the sum decreases with increasing β, meaning

that π2

6
is an upper bound for that sum.
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Next, we need to bound the two differences. First we look at ψj(zi) − ψj(yi). We use
the fact that cos(x) has bounded derivative (i.e. sin(x) is bounded by 1), meaning that
|cos(x)− cos(y)| ≤ C|x− y|. In other words, we’ll show that ψj is Lipschitz continuous:

∂ψj(x)

∂x
=
√

2πj sin(πjx) ≤
√

2πj

⇒ |ψj(zi)− ψj(yi)| ≤
√

2πj|zi − yi|

Because the slope of the function is upper bounded by
√

2πj, so there is no way for
the function to rise by more than that over the interval |zi − yi|. In particular, this
condition for us means that:

ψj(zi)− ψj(yi) ≤
√

2πj

n

Next we need to bound m(zi)−m(yi).

m(zi)−m(yi) =
∞∑
j=1

θj(ψj(zi)− ψj(yi))

≤
∞∑
j=1

θj min(2,
√

2π
j

n
)

≤
N∑
j=1

θj
√

2π
j

n
+

∞∑
j=N+1

2θj

where N is the smallest integer such that 2 ≤
√

2πN
n

. Thus N is some constant times
n. For simplicity, we will assume N = n for the remainder of the problem.

We will show that both terms are on the order O( 1√
n
).

For the first term:

n−1∑
j=1

θj

√
2πj

n
≤
√

2π

n

n−1∑
j=1

θjj

≤
√

2π

n

√√√√n−1∑
j=1

θ2j j
2

√√√√n−1∑
j=1

1

= O(
1√
n

)

Where the second inequality follows from Cauchy-Schwartz.
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For the second term:
∞∑
j=n

2θj ≤
∞∑
j=n

2
θjj

j

≤

√√√√ ∞∑
j=n

2θ2j j
2

√√√√ ∞∑
j=n

1

j2

≤ C√
n

Where we use Cauchy-Schwartz and an integral approximation.

(b)

V ar(θ̂j) =
1

n2

n∑
i=1

ψ2
j (xi)V ar(Yi) =

σ2

n2

n∑
i=1

ψ2
j (xi)

Since the variance of Yi is simply the variance of εi, because m(x) is deterministic (i.e.
Yi = m(xi) + εi and V ar(m(xi)) = 0). Then, each term in

∑n
i=1 ψ

2
j (xi) can be upper

bounded by 2, since 0 ≤ cos2(πji/n) ≤ 1, which results in:

V ar(θ̂j) =
σ2

n2

n∑
i=1

ψ2
j (xi) ≤

2σ2

n

This inequality is tight (in general), since for any j that is a multiple of 2n, the sum is
exactly 2n. In other words, you cannot show that V ar(θ̂j) = σ2

n
for all j, since if I take

j = 2n I get that V ar(θ̂j) = 2σ2

n
. Of course, for asymptotics we probably don’t care

about the constant so it doesn’t really make a difference.

(c) This quantity is just the risk under L2 loss. We know that the risk decomposes as bias
squared plus variance:

E(

∫ 1

0

(m̂(x)−m(x))2dx) =

∫ 1

0

b(m̂(x))2 + V ar(m(x))

We know that:

b(m̂(x)) = E

[
J∑
j=0

θ̂jψj(x)

]
−
∞∑
j=0

θjψj(x) =
J∑
j=0

E

[
θ̂j

]
ψj(x)−

∞∑
j=0

θjψj(x)

= −
∞∑

j=J+1

θjψj(x)

When we look at b2(m̂(x)), we have to multiply all of the terms in the sum, but we are
actually interested in the integral:∫ 1

0

b2(m̂(x))dx =
∞∑

k,j=J+1

∫ 1

0

θjθkψj(x)ψk(x)dx =
∞∑

j=J+1

θ2j
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Since all of the cross terms cancel out due to orthogonality and since
∫ 1

0
ψ2
j (x)dx = 1

for all j.

For the variance:∫ 1

0

V ar(m̂(x))dx =
J∑
j=0

(∫ 1

0

ψ2
j (x)dx

)
V ar(θ̂j) ≤

2Jσ2

n

Using the result from before (which was different and not an equality statement), we get
a slightly different result, but we’re upper bounding the risk which is what’s important,
and we only differ by a constant factor. Putting these two quantities together we get
the result, off by a constant factor.

(d) We’ll find an upper bound on Jσ2

n
+
∑∞

j=J+1 θ
2
j that is independent of θ, and since that

upper bound holds for all θ, it holds for the supremum.

First, writing J = n
1

2β+1 in the expression containing σ2 gives σ2n
−2β
2β+1 . We’ll then bound

the other term as follows:

J2β

∞∑
j=J+1

θ2j ≤
∞∑

j=J+1

θ2j j
2β ≤

∞∑
j=0

θ2j j
2β ≤ C

Which means that the second term is upper bounded by CJ−2β = Cn
−2β
2β+1 . Thus both

terms are upper bounded by some constant times n
−2β
2β+1 and adding the two together

proves the result.

2. (a) The weights at time t+ 1 are:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

Recursively expanding this for each t, (i.e. expanding Dt(i)) we’ll get:

Dt+1(i) =
D0(i) exp

{
−yi

∑t
j=1 αjhj(xi)

}
∏t

j=0 Zj

=
exp {−yiH(xi)}
n
∏t

j=1 Zj

Where we used the fact that D0(i) = 1
n

for all i and Z0 = 1 (i.e. the weights are already

normalized). Next, we use the fact that
∑n

i=1Dt+1(i) = 1, and we bring
∏t

j=1 Zj to the
other side to obtain the result:

1 =
∑n

i=1
exp{−yiH(xi)}
n
∏t
j=1 Zj

1
n

∑n
i=1 exp {−yiH(xi)} =

∏t
j=1 Zj

.
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(b) First, we notice that we can decompse Zt as (we’ll focus just on one time step t):

Zt =
m∑
i=1

Dt(i) exp(−αtyiht(xi)) =
∑

i:yi=ht(xi)

Dt(i) exp(−αt) +
∑

i:yi 6=ht(xi)

Dt(i) exp(αt)

= exp(−αt)
∑

i:yi=ht(xi)

Dt(i) + exp(αt)
∑

i:yi 6=ht(xi)

Dt(i)

= (1− εt) exp(−αt) + εt exp(αt)

Where here we noticed that εt (i.e. the weighted training error at time t) is exactly
equal to the sum of the weights of the data points that ht classifies incorrectly. We’ll
take the derivative of this expression and set it equal to 0 to find an expression for αt:

∂Zt
∂αt

= −(1− εt) exp(−αt) + εt exp(αt) = 0

exp(2αt) =
1− εt
εt

αt =
1

2
log

1− εt
εt

Thus this choice of αt minimizes Zt and gives us the tightest upper bound on the training
error. This is exactly the choice of αt used in Adaboost.

(c) We have a class of hyperplanes in R
T . If we consider a point x, we will represent it as a

vector (h1(x), . . . , hT (x)) and then we are just describing a hyperplane with coefficients
α1, . . . , αT and with intercept fixed at 0. It is well known that the VC dimension of
this set of functions is T (i.e. the dimension of the space). Using Sauer’s Lemma, we

immediately get that this set has shattering number sn ≤
(
en
T

)T
. This means that there

are at most this many possible ways to partition n data points.

(d) Each h1, . . . , hT ∈ H and since we choose T functions, there are exactly |H|T ways to

pick them. Thus the shattering number for H is ≤ |H|T
(
en
T

)T
. Using the VC theorem:

sup
H∈H

R̂(H)−R(H) ≤

√
8

n
log

(
4s(H, 2n)

δ

)

≤

√
8

n

(
T log |H|+ T log

2en

T
+ log

1

δ

)

Which is asymptotically the correct rate.

3. (a) We know the posterior is a dirichlet process with mean:

F̄n(x) =
n

n+ α
Fn(x) +

α

n+ α
F0(x)
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When we compute the bias, the Fn(x) in the first term will become F (x) (because the
empirical CDF is unbiased) and the second term is not random. Thus the bias is:

E(F̄n(x))− F (x) =
n

n+ α
F (x)− F (x) +

α

n+ α
F0(x)

=
α

n+ α
(F0(x)− F (x))

Which is pretty interesting, because as a decrease α, I decrease the bias of the estimator,
which makes a lot of sense. Also, if F0 is close to the truth, then my estimator has lower
bias, which is pretty cool.

When we compute the variance, we use the fact that the first term is not random, and
that the second term is just a scaled version of the empirical CDF:

V ar(F̄n(x)) =
n2

(n+ α)2
V ar(Fn(x)) + 0

=
n2

(n+ α)2
1

n
V ar(1(X < x))

=
n

(n+ α)2
F (x)(1− F (x))

Here we used standard properties of the variance, and the fact that the indicator function
just specifies a Bernoulli random variable, with p = F (x), and we know that bernoulli’s
have variance p(1− p). This gives us the variance of the posterior mean.

The MSE of the posterior mean is the bias squared plus the variance. The empirical
CDF is unbiased so its MSE is just its variance. Thus we look at the following:

α2

(n+ α)2
(F0(x)− F (x))2 +

n

(n+ α)2
F (x)(1− F (x)) <

1

n
F (x)(1− F (x))

Whenever this inequality is satisfied, we know that the posterior mean has lower risk
than the empirical CDF.

(b) The empirical CDF is easy. For a fixed x, we can view the empirical CDF as a sequence
of n bernoulli random variables, each with p = P (X < x). Moreover F (x) is the mean,
so we can immediately apply Hoeffding’s inequality:

P(Fn(x)− F (x) ≥ ε) < exp{−2nε2}

For the posterior mean, we have to do something more interesting. The main problem
is F̄n(x) is unbiased, but we can add terms to both sides (inside the probability), to
account for this:

P(F̄n(x)− F (x) > ε)

= P

(
n

n+ α
Fn(x)− n

n+ α
F (x) > ε+

α

n+ α
(F (x)− F0(x))

)
= P

(
Fn(x)− F (x) >

n+ α

n
ε+

α

n
(F (x)− F0(x))

)
≤ exp

{
−2n

(
n+ α

n
ε+

α

n
(F (x)− F0(x))

)2
}

6



Which gives you some (not particularly illuminating) concentration result for the pos-
terior. The thing that is annoying is that the concentration depends on the deviation
between the truth and the prior, which means that we need to select the prior well to
get a good result.
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