
10702 Homework 2 Solution

Thanks to Akshay Krishnamurthy for providing his solution.

1 Convexity and Optimization

1. (Convexity)

(a) We’ll show that the second derivative of 1/g(x) is always positive, which implies that
1/g(x) is convex. First, the second derivative is:

∂2
(

1
g(x)

)

∂x2
=

2g′2(x)

g3(x)
− g′′(x)

g2(x)

Next, we argue that this function is always positive. First, since g is always positive, we
know that g3(x) > 0. Moreover, both g′2(x) and g(x) are always greater than or equal to
0 (actually g(x) is strictly greater than 0). Thus the first term is positive. Finally since
g is concave, we know that g′′(x) ≤ 0, meaning that the second term is always always
positive. Putting this together, we know that the second derivative of 1/g(x) is always
positive, which implies that the function is convex.

(b) Consider the following set: S = {(x, y) : x2 ≤ y < x2 +1}. All of the boundary points of
this set lie on y = x2, and they each have a supporting hyperplane. However, the set is
clearly non-convex, as one can find two points such that the line passing between is not
contained within the set. This only works because the set is not closed. If S were closed
and had non-empty interior, then supporting hyperplanes would imply convexity.

2. (Subdifferentials)

(a) The subdifferentials for |z| are:

∂f(z) =

{

sign(z) : z 6= 0

[−1, 1] : z = 0

Let’s start by looking at the first case. If z 6= 0, then |z| is just a line, with slope ±1,
depending on the sign of z. In particular, if z > 0, then f(z) = z, and the derivative is
just 1. On the other hand, if z < 0, then f(z) = −z and the derivative is −1. Thus for
z 6= 0, the subdifferential is just the sign of z.
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If z = 0, then using the definition of subdifferential, we look for y such that f(z) ≥
f(0)+ yz for all z. First, we know that f(0) = 0. Next, if z is negative, then f(z) = −z,
so we look for y such that −z ≥ yz. Since z is negative, this holds for all y ≥ −1.
Looking at z that are positive, we’ll get that z ≥ yz, which holds for all y ≤ 1. Thus we
need that −1 ≤ y ≤ 1, and we get that the subdifferential at this point is [−1, 1].

(b) First, we know that ||z||1 =
∑n

i=1 |zi|. Using the definition of subdifferentials, we are
looking for y such that

∑n

i=1 |zi|− |xi| ≥ yT (z−x) for all z. If all of the xis are non-zero,
then it’s easy to see that yi = sign(xi); otherwise it’s easy to violate the inequality (also
this follows from the previous question). Similarly, if some xi = 0, then we can have
yi ∈ [−1, 1] without violating the inequality. Thus we see that the subdifferential is:

∂f(z) =

{

y ∈ Rn

∣

∣

∣

∣

∣

yi = sign(zi) : zi 6= 0

yi ∈ [−1, 1] : zi = 0

(c) We can write f(z) = 1
2
||z − y||22 + λ||z||1, as 1

2

∑n

i=1(zi − yi)
2 + λ

∑n

i=1 |zi|. Additionally,
we already know the subdifferential of the second part, and the subdifferential of the
first part is just z − y. Putting these together, we get:

∂f(z) =

{

x

∣

∣

∣

∣

∣

xi = zi − yi + λsign(zi) : zi 6= 0

xi ∈ [−yi − λ,−y1 + λ] : zi = 0

(d) Finally, we search for z such that 0 ∈ ∂f(z). Setting xi = 0 in each expression above
gives:

z∗i = yi − λsign(z∗i ) if z∗i 6= 0

yi ∈ [−λ, λ] if z∗i = 0

Next, noticing that the first expression translates into z∗i = yi−λ if z∗i ≥ 0 and z∗i = yi+λ
if z∗i < 0, we can then write:

z∗i = yi − λ if yi > λ

z∗i = yi + λ if yi < λ

z∗i = 0 if yi ∈ [−λ, λ]

Which is exactly the expression we have for z∗(i).

3. (Optimization)

(a) It’s easy to see that the primal is a convex problem because (a) the objective is convex,
(b) the inequality constraints are all convex (in fact they are affine), and (c) the equality
constraints are affine.

First we’ll show that xi log xi is convex. The first derivative is log xi + 1 and the
second derivative of xi log xi is just 1/xi, which is positive for all xi > 0 (i.e. all
xi ∈ domxi log xi). Thus each of the terms in the sum is convex, and consequently
the sum is convex, by the non-negative weighted sum property.

It’s easy to see that Ax ≤ b is affine since it is just a linear system of equations. Similarly1T x = 1 is also affine. Putting everything together, we see that the problem is convex.
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(b) The KKT conditions are:

λ∗ ≥ 0 (1)

Ax∗ ≤ b (2)1T x∗ = 1 (3)

λ∗(Ax∗ − b) = 0 (4)

log x∗

i + 1 + λ∗T A(i) + µ∗ = 0 ∀i (5)

where A(i) denotes the ith column of A, i.e. we took all of the coefficients that we
multiply by xi, which is exactly the ith column.

(c) Suppose we are given λ∗. Then looking at Equation 5, we can write:

x∗

i = exp{−(µ∗ + 1 + λ∗T A(i))}

Then using Equation 3, we know that
∑n

i=1 x∗

i = 1, so we can normalize the x∗

i s (effec-
tively solving for µ∗):

x∗

i =
exp{−(µ∗ + 1 + λ∗T A(i)}

∑n

j=1 exp{−(µ∗ + 1 + λ∗T A(j)} =
exp{−λ∗T A(i)}

∑n

j=1 exp{−λ∗T A(j)}

And these are the values of x∗ in terms of just λ∗.

2 Density Estimation

(a) First we consider the bias.E(p̂h(x)) − p(x) =
N
∑

j=1

E( π̂j

hd
1(x ∈ Bj)

)

− p(x)

=

N
∑

j=1

1

hdn

n
∑

i=1

E (1(Xi ∈ Bj)1(x ∈ Bj)) − p(x)

=

N
∑

j=1

1

hd
p(Bj)1(x ∈ Bj) − p(x)

=
N
∑

j=1

(

1

hd
p(Bj) − p(x)

) 1(x ∈ Bj)

Where p(Bj) =
∫

Bj
p(x)dx. Next, using the restrictions of P and since 1/hdp(Bj) is the

average density on the cube Bj (it has volume hd, we know that we can upper bound |p(x) −
1/hdp(Bj)| by L times maximum two-norm difference between x and anything in Bj (i.e.

|p(x) − 1/hdp(Bj)| ≤ Lh
√

d. This gives us:

≤
N
∑

j=1

Lh
√

d1(x ∈ Bj) = Lh
√

d
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Which is the bias.

For the variance, we reorder the sums to get p̂h(x) = 1
n

∑n

i=1

∑N

j=1
1(Xi∈Bj)

hd 1(x ∈ Bj), and

define Yi ,
∑N

j=1
1(Xi∈Bj)

hd 1(x ∈ Bj). Then:

V ar(p̂h(x)) =
1

n
V ar(Yi) =

1

n

(E(Y 2
i ) − E(Yi)

2
)

≤ 1

n
E(Y 2

i )E(Y 2
i ) = E( N

∑

j=1

1(Xi ∈ Bj)

h2d
1(x ∈ Bj)

)

Because all of the cross-terms cancel out (i.e. 1(Xi ∈ Bj)1(Xi ∈ Bk) = 0 whenever j 6= k).
Reducing this expression we get:E(Y 2

i ) =
N
∑

j=1

p(Bj)

h2d
1(x ∈ Bj)

Plugging back into the expression for variance, we get:

V ar(p̂h(x)) ≤ 1

nh2d

N
∑

j=1

p(Bj)1(x ∈ Bj) ≤
1

nh2d

Thus the risk is upper bounded by L2h2d + 1
nh2d .

(b) We simply take the derivative (w.r.t h) of the expression for the upper bound for the risk, and
solve for h. This gives the value of h in terms of n that minimizes this upper bound. The
derivative is:

2L2dh − 2d

nh2d+1
= 0

2ndL2h2d+2 − 2d = 0

hn =

(

1

nL2

)
1

2d+2

Plugging this back into the upper bound for risk, we get:

L2d

(

1

nL2

)
1

d+1

+
1

n
(

1
nL2

)
2d

2d+2

=
ndL2

(

1
nL2

)
2d+2

2d+2 + 1

n
(

1
nL2

)
2d

2d+2

=
L

d
d+1 d + 1

n1− 2d
2d+2

=
L

d
d+1 d + 1

n
1

d+1

So the risk goes to 0 at the rate n
−1

d+1 , (i.e. in the one dimensional case the rate of convergence
is 1/

√
n
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(c) By triangle inequality:

|p̂h(x) − p(x)| ≤ |p̂h(x) − ph(x)| + |ph(x) − p(x)| ≤ |p̂h(x) − ph(x)| + Lh
√

d

Since the second term is exactly the bias (i.e. ph(x) = E(p̂h(x))). The next term, we can
bound using Bernstein’s inequality, since p̂h(x) = 1

n

∑n

i=1 Yi where each Yi (defined above) is
bounded by 1

hd and has V ar(Yi) ≤ 1
h2d .P(|p̂h(x) − ph(x)| > ǫ) ≤ 2 exp

{

− nǫ2

2h−2d + 2h−dǫ/3

}

= 2 exp

{ −nǫ2h2d

2(1 + hdǫ/3)

}

Putting the triangle inequality expression together with this bound, we get:P(|p̂h(x) − p(x)| ≥ ǫ + Lh
√

d) ≤ 2 exp

{ −nǫ2h2d

2(1 + hdǫ/3)

}

(d) First, using the triangle inequality, we’ll get two terms that we need to bound:

∫

|p(x) − p̂h(x)|dx ≤
∫

|p(x) − ph(x)|dx +

∫

|ph(x) − p̂h(x)|dx

The first term is easy to bound. We break up the integral into each cube, and then recognize
that ph(x) = p(Bj)/h

d on each cube. Applying the bound on the bias in Part (a) to every
cube, we get a nice bound:

∫

|p(x) − ph(x)|dx =

n
∑

j=1

∫

Bj

|p(x) − ph(x)|dx ≤
N
∑

j=1

Lh
√

d = NLh
√

d

For the second term, we’ll use the multinomial inequality. First, we again break up the integral
into the cubes, then recognize that both p̂h and ph are constant over each cube. This gives us:

∫

|ph(x) − p̂h(x)|dx =

n
∑

j=1

hd|p̂h − ph|

Then, using that hdph = E(hdp̂h), and that this looks like a multinomial with n draws, we can
directly apply the concentration inequality:P( N

∑

j=1

|hdp̂h − hdph| ≥ nǫ

)

≤ 3 exp

{−nǫ2

25

}

Putting this together with the other half of the triangle inequality we’ll get:P(∫ |p̂h(x) − p(x)|dx) ≥ nǫ + NLh
√

d

)

≤ 3 exp

{−nǫ2

25

}
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