36-702 Homework 1 Solution

Thanks to William Bishop and Rafael Stern for providing their solutions.

Problem 1

(a) Let $n(j)=\sum_{i} I_{\{j\}}\left(x_{i}\right)$,

$$
\begin{gathered}
L(\theta)=\theta^{n(1)} \cdot\left(\frac{\theta}{2}\right)^{n(2)} \cdot\left(\frac{\theta}{3}\right)^{n(3)} \cdot\left(\frac{6-11 \theta}{6}\right)^{n(4)} \propto \\
\propto \theta^{n(1)+n(2)+n(3)} \cdot(6-11 \theta)^{n(4)}
\end{gathered}
$$

Thus, there exists a constant k such that:

$$
\begin{gathered}
l(\theta)=k+(n-n(4)) \log (\theta)+n(4) \log (6-11 \theta) \\
\frac{d l(\theta)}{d \theta}=\frac{n-n(4)}{\theta}-\frac{11 n(4)}{6-11 \theta}=\frac{(n-n(4))(6-11 \theta)-11 n(4) \theta}{\theta(6-11 \theta)}
\end{gathered}
$$

Hence, $\frac{d l(\theta)}{d \theta}=0$ if and only if:

$$
\begin{gathered}
6(n-n(4)=11 n \theta \\
\theta=\frac{6(n-n(4))}{11 n}
\end{gathered}
$$

Since $L(0)=L(6 / 11)=0$ and $\Theta \cup\{0,6 / 11\}$ is a closed set, by Weierstrass's Theorem, $\frac{6(n-n(4))}{11 n}$ maximizes L.
(b) From the previous item:

$$
\frac{d l(\theta)}{d \theta}=\frac{n-n(4)}{\theta}-\frac{11 n(4)}{6-11 \theta}
$$

Thus,

$$
\frac{d^{2} l(\theta)}{d \theta^{2}}=-\frac{n-n(4)}{\theta^{2}}-\frac{121 n(4)}{(6-11 \theta)^{2}}=
$$

Finally, $I(\theta)=-E\left(\frac{d^{2} l(\theta)}{d \theta^{2}}\right)=$

$$
\begin{gathered}
=\frac{n-\frac{n(6-11 \theta)}{6}}{\theta^{2}}+\frac{121 \frac{n(6-11 \theta)}{6}}{(6-11 \theta)^{2}}= \\
=\frac{11 n}{6 \theta}+\frac{121 n}{6(6-11 \theta)}=\frac{11 n(6-11 \theta)+121 n \theta}{6 \theta(6-11 \theta)}=\frac{11 n}{\theta(6-11 \theta)}
\end{gathered}
$$

(c) We know that $\frac{\hat{\theta}-\theta}{\sqrt{I(\theta)}} \xrightarrow{\mathcal{L}} N(0,1)$. Hence an asymptotic $1-\alpha$ confidence interval for θ is:

$$
\left[\hat{\theta}-z_{1-\alpha / 2} \sqrt{I(\hat{\theta})}, \hat{\theta}+z_{1-\alpha / 2} \sqrt{I(\hat{\theta})}\right]
$$

That is,

$$
\left[\frac{6}{11}\left(1-\frac{n(4)}{n}\right)-z_{1-\alpha / 2} \frac{11 \sqrt{n}}{6 \sqrt{\frac{n(4)}{n}\left(1-\frac{n(4)}{n}\right)}}, \frac{6}{11}\left(1-\frac{n(4)}{n}\right)+z_{1-\alpha / 2} \frac{11 \sqrt{n}}{6 \sqrt{\frac{n(4)}{n}\left(1-\frac{n(4)}{n}\right)}}\right]
$$

(d) From item (a), $\hat{\theta}=\frac{6}{11}\left(1-\frac{n(4)}{n}\right)$. By the LGN, $\frac{n(4)}{n} \xrightarrow{P} \frac{6-11 \theta}{6}$. Thus, by the continuous mapping theorem:

$$
\hat{\theta} \xrightarrow{P} \frac{6}{11}\left(1-\frac{6-11 \theta}{6}\right)=\theta
$$

Problem 2

For any $t \in \mathbb{R}$ define $f_{t}(z)=\operatorname{sign}(\sin (t z))$. Let $\mathcal{F}=\left\{f_{t}: t \in \mathbb{R}\right\}$. Show that \mathcal{F} has infinite VC dimension. Hint: consider a set of points like $\left\{1 / 2,1 / 4, \ldots, 1 / 2^{n}\right\}$.

Proof. Define $z_{i}=\frac{1}{2^{i}}$ and define $\mathcal{Z}_{n}=\left\{z_{i}: i \in[1,2, \ldots n]\right\}$. Note that if $f_{t}\left(z_{i}\right)=1$ it must be that $\operatorname{sign}\left(\sin \left(t z_{i}\right)\right)=1$, which implies that:

$$
\begin{aligned}
\sin \left(t z_{i}\right) & >0 \\
t z_{i} & >\sin ^{-1}(0)
\end{aligned}
$$

This implies that

$$
0<t z_{i}<\pi \text { or } 2 \pi<t z_{i}<3 \pi \text { or } 4 \pi<t z_{i}<5 \pi \ldots
$$

Written succinctly, it must be that $0+a_{i} 2 \pi<t z_{i}<\pi+a_{i} 2 \pi, a_{i} \in$ $[0,1,2, \ldots, \infty)$.
Now, consider the case when $f_{t} z_{i}=-1$. In this case it must be that:

$$
\begin{aligned}
\sin \left(t z_{i}\right) & <0 \\
t z_{i} & <\sin ^{-1}(0)
\end{aligned}
$$

This implies that:

$$
\pi<t z_{i}<2 \pi \text { or } 3 \pi<t z_{i}<4 \pi \text { or } 5 \pi<t z_{i}<6 \pi \ldots
$$

Written succinctly, it must be that $\pi+a_{i} 2 \pi<t z_{i}<2 \pi+a_{i} 2 \pi, a_{i} \in$ $[0,1,2, \ldots, \infty)$.
Now, let $y_{i}=f_{t}\left(z_{i}\right)$ and let $\mathcal{Y}_{n}=\left\{y_{i}: i \in[1, \ldots n]\right\}$. For a given \mathcal{Y}_{n} we can write a set of n inequalities:

$$
\left\{\begin{array}{l}
0+a_{i} 2 \pi<t z_{i}<\pi+2 a_{i} \pi, \quad y_{i}=1 \\
\pi+a_{i} 2 \pi<t z_{i}<2 \pi+2 a_{i} \pi, \quad y_{i}=-1
\end{array}\right.
$$

Substituting for z_{i}, this becomes:

$$
\left\{\begin{array}{l}
0+a_{i} 2 \pi<t \frac{1}{2^{i}}<\pi+2 a_{i} \pi, \quad y_{i}=1 \\
\pi+a_{i} 2 \pi<t \frac{1}{2^{i}}<2 \pi+2 a_{i} \pi, \quad y_{i}=-1
\end{array}\right.
$$

Let $t=k \pi$, we can then write the set of equations as:

$$
\left\{\begin{array}{l}
0+a_{i} 2 \pi<k \pi \frac{1}{2^{i}}<\pi+2 a_{i} \pi, \quad y_{i}=1 \\
\pi+a_{i} 2 \pi<k \pi \frac{1}{2^{i}}<2 \pi+2 a_{i} \pi, \quad y_{i}=-1
\end{array}\right.
$$

and this is equal to:

$$
\begin{cases}0+a_{i} 2<k \frac{1}{2^{i}}<1+2 a_{i}, & y_{i}=1 \\ 1+a_{i} 2<k \frac{1}{2^{i}}<2+2 a_{i}, & y_{i}=-1\end{cases}
$$

We add 1 to the top equation to get:

$$
\left\{\begin{array}{l}
1+a_{i} 2<1+\frac{k}{2^{i}}<2+2 a_{i}, \quad y_{i}=1 \\
1+a_{i} 2<\frac{k}{2^{i}}<2+2 a_{i}, \quad y_{i}=-1
\end{array}\right.
$$

Finally, for convenience, subtract $2 a_{i}$ from both equations to get:

$$
\left\{\begin{array}{l}
1<1+\frac{k}{2^{i}}-2 a_{i}<2, \quad y_{i}=1 \\
1<\frac{k}{2^{i}}-2 a_{i}<2, \quad y_{i}=-1
\end{array}\right.
$$

Now, let $\mathcal{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ be a set of any arbitrary labelings for the points in \mathcal{Z}_{n}. Note, that there are 2^{n} such labelings. I will now prove that it is possible to find a solution to the set of equations defined directly above for all such labelings.

In general, if $y_{i}=1$, we can say the following:

$$
\begin{aligned}
1 & <1+\frac{k}{2^{i}}-2 a_{1}<2 \\
2^{i} & <2^{i}+k-2^{i+1} a_{1}<2^{i+1} \\
0 & <k-a_{1} 2^{i+1}<2^{i+1}-2^{i}
\end{aligned}
$$

And if $y_{i}=-2$, we can say:

$$
\begin{gathered}
1<\frac{k}{2^{i}}-2 a_{1}<2 \\
2^{i}<k-2^{i+1} a_{1}<2^{i+1}
\end{gathered}
$$

This is a very important pattern. For a fixed i, we have an alternating set of ranges for which k can be in if $y_{i}=1$, ie: $\left(0,2^{i+1}-2^{i}\right),\left(1 \times 2^{i+1}, 1 \times 2^{i+1}+\right.$ $\left.2^{i+1}-2^{i}\right),\left(2 \times 2^{i+1}, 2 \times 2^{i+1}+2^{i+1}-2^{i}\right), \ldots$. We also have an alternating set of ranges for which k can be in if $y_{i}=1$. Notice that these ranges are situated between those for $y_{i}=1$, ie: $\left(2^{i}, 2^{i+1}\right),\left(1 \times 2^{i+1}+2^{i}, 1 \times 2^{i+1}+\right.$ $\left.2^{i+1}\right),\left(2 \times 2^{i+1}+2^{i}, 2 \times 2^{i+1}+2^{i+1}\right), \ldots$.

Further, notice what happens as we move from ranges for i and ranges for $i+1$. The ranges for $i+1$ are twice as big as the ranges for i. Additionally, the ranges for k when $y_{i+1}=1$ will cover the ranges for k when $y_{i}=1$ and $y_{i}=-1$. This also holds for the ranges when $y_{i+1}=-1$. Thus, no matter what the label for y_{i}, it will always be possible to find a value of k that correctly predicts the label for y_{i} and y_{i+1}. This relationship holds for all i, so it must be that for any arbitrary set \mathcal{Y}_{n}, we can find a $k=t \pi$, such that f_{t} correctly maps all $z \in \mathcal{Z}_{n}$ to $y \in \mathcal{Y}_{n}$. This is equivalent to saying $s(\mathcal{F}, n)=2^{n}$ for all n , which implies the VC dimension for \mathcal{F} is infinity.

Problem 3

(a) We wish to find an ϵ such that $P(|\bar{X}-\mu|>\epsilon) \leq \delta$. By Bernstein's Inequality, it is sufficient to take an ϵ such that:

$$
\begin{gathered}
2 \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}+2 c \epsilon / 3}\right) \leq \delta \\
\frac{n \epsilon^{2}}{2 \sigma^{2}+2 c \epsilon / 3} \geq \log (2 / \delta) \\
\epsilon^{2}-\frac{2 c \log (2 / \delta) \epsilon}{3 n}-\frac{2 \sigma^{2} \log (2 / \delta)}{n} \geq 0
\end{gathered}
$$

Hence, it is sufficient to take ϵ such that:

$$
\epsilon \geq \frac{c \log (2 / \delta)}{3 n}+\sqrt{\frac{\left(\frac{2 c \log (2 / \delta)}{3 n}\right)^{2}+\frac{8 \sigma^{2} \log (2 / \delta)}{n}}{4}}
$$

Remembering that $\sqrt{x+y} \leq \sqrt{x}+\sqrt{y}$, it is sufficient to take ϵ such that:

$$
\epsilon \geq \frac{2 c \log (2 / \delta)}{3 n}+\sqrt{\frac{2 \sigma^{2} \log (2 / \delta)}{n}}
$$

(b) We wish to show that:

$$
\forall \epsilon>0, \exists C>0: P\left(n\left|\bar{X}_{n}-\mu_{n}\right|>C\right) \leq \epsilon
$$

First, observe that since X_{i} are dicotomic, $\left|X_{i}\right| \leq 1$. Next, if we call $P\left(Y_{i} \in A_{n}\right)=p_{n}, \sigma^{2} \leq p_{n}\left(1-p_{n}\right) \leq p_{n}$. Also call $M=\sup f$ and observe that, $p_{n} \leq \frac{M}{n}$ and, thus, $\sigma^{2} \leq \frac{M}{n}$. Hence, by Bernstein's Inequality:

$$
\begin{gathered}
P\left(\left|\bar{X}_{n}-\mu_{n}\right|>\frac{C}{n}\right) \leq 2 \exp \left(-\frac{\frac{C^{2}}{n}}{\frac{2 M}{n}+\frac{2 C}{3 n}}\right) \\
P\left(\left|\bar{X}_{n}-\mu_{n}\right|>\frac{C}{n}\right) \leq 2 \exp \left(-\frac{C}{2 M / C+2 / 3}\right)
\end{gathered}
$$

The result follows observing that $2 \exp \left(-\frac{C}{2 M / C+2 / 3}\right) \xrightarrow{C \mapsto \infty} 0$.

Problem 4

(Rademacher Complexity). Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{N}\right\}$ where each f is a binary function: $f(x) \in\{0,1\}$. Show that

$$
\mathcal{R}_{n}(\mathcal{F}) \leq 2 \sqrt{\frac{\log N}{n}}
$$

Proof. From theorem 42.33 in the notes, we know that:

$$
\mathcal{R}_{n}(\mathcal{F}) \leq \sqrt{\frac{2 \log (s(\mathcal{F}, n))}{n}}
$$

For a finite set of functions $\mathcal{F}=\left\{f_{1}, \ldots, f_{N}\right\}$ it must be that $s(\mathcal{F}, n) \leq N$ as it is impossible to produce more unique labelings than there are functions in the set.

Thus, it immediately follows that:

$$
\mathcal{R}_{n}(\mathcal{F}) \leq \sqrt{\frac{2 \log (N)}{n}} \leq 2 \sqrt{\frac{\log N}{n}}
$$

