
36-702 Homework 1 Solution

Thanks to William Bishop and Rafael Stern for providing their solutions.

Problem 1

(a) Let n(j) =
∑

i I{j}(xi),

L(θ) = θn(1) ·
(

θ

2

)n(2)

·
(

θ

3

)n(3)

·
(

6 − 11θ

6

)n(4)

∝

∝ θn(1)+n(2)+n(3) · (6 − 11θ)n(4)

Thus, there exists a constant k such that:

l(θ) = k + (n − n(4)) log(θ) + n(4) log(6 − 11θ)

dl(θ)

dθ
=

n − n(4)

θ
− 11n(4)

6 − 11θ
=

(n − n(4))(6 − 11θ) − 11n(4)θ

θ(6 − 11θ)

Hence, dl(θ)
dθ = 0 if and only if:

6(n − n(4) = 11nθ

θ =
6(n − n(4))

11n

Since L(0) = L(6/11) = 0 and Θ ∪ {0, 6/11} is a closed set, by Weier-

strass’s Theorem, 6(n−n(4))
11n maximizes L.
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(b) From the previous item:

dl(θ)

dθ
=

n − n(4)

θ
− 11n(4)

6 − 11θ

Thus,

d2l(θ)

dθ2
= −n − n(4)

θ2
− 121n(4)

(6 − 11θ)2
=

Finally, I(θ) = −E(d2l(θ)
dθ2 ) =

=
n − n(6−11θ)

6

θ2
+

121n(6−11θ)
6

(6 − 11θ)2
=

=
11n

6θ
+

121n

6(6 − 11θ)
=

11n(6 − 11θ) + 121nθ

6θ(6 − 11θ)
=

11n

θ(6 − 11θ)

(c) We know that θ̂−θ√
I(θ̂)

L−→ N(0, 1). Hence an asymptotic 1− α confidence

interval for θ is:

[

θ̂ − z1−α/2

√

I(θ̂), θ̂ + z1−α/2

√

I(θ̂)

]

That is,









6

11

(

1 − n(4)

n

)

− z1−α/2
11
√

n

6

√

n(4)
n

(

1 − n(4)
n

)

,
6

11

(

1 − n(4)

n

)

+ z1−α/2
11
√

n

6

√

n(4)
n

(

1 − n(4)
n

)









(d) From item (a), θ̂ = 6
11

(

1 − n(4)
n

)

. By the LGN, n(4)
n

P−→ 6−11θ
6 . Thus,

by the continuous mapping theorem:

θ̂
P−→ 6

11

(

1 − 6 − 11θ

6

)

= θ
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Problem 2

For any t ∈ R define ft(z) = sign(sin(tz)). Let F = {ft : t ∈ R}. Show
that F has infinite VC dimension. Hint: consider a set of points like
{1/2, 1/4, . . . , 1/2n}.

Proof. Define zi = 1
2i and define Zn = {zi : i ∈ [1, 2, . . . n]}. Note that if

ft(zi) = 1 it must be that sign(sin(tzi)) = 1, which implies that:

sin(tzi) > 0

tzi > sin−1(0)

This implies that

0 < tzi < π or 2π < tzi < 3π or 4π < tzi < 5π . . .

Written succinctly, it must be that 0 + ai2π < tzi < π + ai2π, ai ∈
[0, 1, 2, . . . ,∞).
Now, consider the case when ftzi = −1. In this case it must be that:

sin(tzi) < 0

tzi < sin−1(0)

This implies that:

π < tzi < 2π or 3π < tzi < 4π or 5π < tzi < 6π . . .

Written succinctly, it must be that π + ai2π < tzi < 2π + ai2π, ai ∈
[0, 1, 2, . . . ,∞).
Now, let yi = ft(zi) and let Yn = {yi : i ∈ [1, . . . n]}. For a given Yn we can
write a set of n inequalities:

{

0 + ai2π < tzi < π + 2aiπ, yi = 1

π + ai2π < tzi < 2π + 2aiπ, yi = −1

Substituting for zi, this becomes:
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{

0 + ai2π < t 1
2i < π + 2aiπ, yi = 1

π + ai2π < t 1
2i < 2π + 2aiπ, yi = −1

Let t = kπ, we can then write the set of equations as:

{

0 + ai2π < kπ 1
2i < π + 2aiπ, yi = 1

π + ai2π < kπ 1
2i < 2π + 2aiπ, yi = −1

and this is equal to:

{

0 + ai2 < k 1
2i < 1 + 2ai, yi = 1

1 + ai2 < k 1
2i < 2 + 2ai, yi = −1

We add 1 to the top equation to get:

{

1 + ai2 < 1 + k
2i < 2 + 2ai, yi = 1

1 + ai2 < k
2i < 2 + 2ai, yi = −1

Finally, for convenience, subtract 2ai from both equations to get:

{

1 < 1 + k
2i − 2ai < 2, yi = 1

1 < k
2i − 2ai < 2, yi = −1

Now, let Y = {y1, . . . , yn} be a set of any arbitrary labelings for the
points in Zn. Note, that there are 2n such labelings. I will now prove that
it is possible to find a solution to the set of equations defined directly above
for all such labelings.

In general, if yi = 1, we can say the following:

1 < 1 +
k

2i
− 2a1 < 2

2i < 2i + k − 2i+1a1 < 2i+1

0 < k − a12
i+1 < 2i+1 − 2i
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And if yi = −2, we can say:

1 <
k

2i
− 2a1 < 2

2i < k − 2i+1a1 < 2i+1

This is a very important pattern. For a fixed i, we have an alternating set
of ranges for which k can be in if yi = 1, ie: (0, 2i+1−2i), (1×2i+1, 1×2i+1 +
2i+1 − 2i), (2 × 2i+1, 2 × 2i+1 + 2i+1 − 2i), . . .. We also have an alternating
set of ranges for which k can be in if yi = 1. Notice that these ranges are
situated between those for yi = 1, ie: (2i, 2i+1), (1 × 2i+1 + 2i, 1 × 2i+1 +
2i+1), (2 × 2i+1 + 2i, 2 × 2i+1 + 2i+1), . . ..

Further, notice what happens as we move from ranges for i and ranges
for i+1. The ranges for i+1 are twice as big as the ranges for i. Additionally,
the ranges for k when yi+1 = 1 will cover the ranges for k when yi = 1 and

yi = −1. This also holds for the ranges when yi+1 = −1. Thus, no matter
what the label for yi, it will always be possible to find a value of k that
correctly predicts the label for yi and yi+1. This relationship holds for all
i, so it must be that for any arbitrary set Yn, we can find a k = tπ, such
that ft correctly maps all z ∈ Zn to y ∈ Yn. This is equivalent to saying
s(F , n) = 2n for all n, which implies the VC dimension for F is infinity.

Problem 3

(a) We wish to find an ǫ such that P (|X̄ − µ| > ǫ) ≤ δ. By Bernstein’s
Inequality, it is sufficient to take an ǫ such that:

2exp

(

− nǫ2

2σ2 + 2cǫ/3

)

≤ δ

nǫ2

2σ2 + 2cǫ/3
≥ log(2/δ)

ǫ2 − 2c log(2/δ)ǫ

3n
− 2σ2 log(2/δ)

n
≥ 0

Hence, it is sufficient to take ǫ such that:
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ǫ ≥ c log(2/δ)

3n
+

√

√

√

√

(

2c log(2/δ)
3n

)2
+ 8σ2 log(2/δ)

n

4

Remembering that
√

x + y ≤ √
x +

√
y, it is sufficient to take ǫ such

that:

ǫ ≥ 2c log(2/δ)

3n
+

√

2σ2 log(2/δ)

n

(b) We wish to show that:

∀ǫ > 0,∃C > 0 : P (n|X̄n − µn| > C) ≤ ǫ

First, observe that since Xi are dicotomic, |Xi| ≤ 1. Next, if we call
P (Yi ∈ An) = pn, σ2 ≤ pn(1 − pn) ≤ pn. Also call M = sup f and
observe that, pn ≤ M

n and, thus, σ2 ≤ M
n . Hence, by Bernstein’s In-

equality:

P (|X̄n − µn| >
C

n
) ≤ 2exp

(

−
C2

n
2M
n + 2C

3n

)

P (|X̄n − µn| >
C

n
) ≤ 2exp

(

− C

2M/C + 2/3

)

The result follows observing that 2exp
(

− C
2M/C+2/3

)

C 7→∞−−−−→ 0.

Problem 4

(Rademacher Complexity). Let F = {f1, . . . , fN} where each f is a binary
function: f(x) ∈ {0, 1}. Show that

Rn(F) ≤ 2

√

log N

n
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Proof. From theorem 42.33 in the notes, we know that:

Rn(F) ≤
√

2 log(s(F , n))

n

For a finite set of functions F = {f1, . . . , fN} it must be that s(F , n) ≤ N
as it is impossible to produce more unique labelings than there are functions
in the set.

Thus, it immediately follows that:

Rn(F) ≤
√

2 log(N)

n
≤ 2

√

log N

n

7


