306-702 Homework 1 Solution

Thanks to William Bishop and Rafael Stern for providing their solutions.

Problem 1

(a) Let n(j) = >_; Ly (i),

'@ ro\"® 6 110\"W
_gny (0 (Y :
w-et-(5) - (5) () =

x 9n(1)+n(2)+n(3) . (6 - 119)71(4)

Thus, there exists a constant k such that:
1(0) =k + (n—n(4))log(d) + n(4)log(6 — 116)

di(f) n-n(4) 11n(4) (n—n(4))(6 —110) — 11n(4)0

o 6 6-110 (6 —116)

Hence, % = 0 if and only if:

6(n —n(4) = 11nd

6(n —n(4))
11n

Since L(0) = L(6/11) = 0 and ©® U {0,6/11} is a closed set, by Weier-
6(n—n(4))
11n

=

strass’s Theorem, maximizes L.



(b) From the previous item:

di(6) n—n(4) 11ln(4)

o 0  6-110

Thus,

*l6)  n—n(4) 12In(4)

gz~ 02 6—110)2

Finally, 1(6) = —E(L40) =

n(6-—110) n(6-—110)
— 5 - RI7

62 + (6 —110)2

_1In 12In 11n(6 —110) +121n6  1ln

“ 60 " 6(6 —116) 66(6 — 116) 6(6 —116)

¢) We know that éf@A LN 0,1). Hence an asymptotic 1 — « confidence
(c) NITG) (0,1) ymp

interval for 6 is:

[é — Z1-a/2 I(é% 0+ “1-a/2 \/%]

That is,

(d) From item (a), f = & (1 - %4)) By the LGN, 24 £, 6=110 - g

by the continuous mapping theorem:




Problem 2

For any t € R define f;(z) = sign(sin(¢z)). Let F = {f: : t € R}. Show
that F has infinite VC dimension. Hint: consider a set of points like

(1/2,1/4,...,1/2"}.

Proof. Define z; = % and define Z, = {z; : i € [1,2,...n]}. Note that if

fi(z;) = 1 it must be that sign(sin(¢z;)) = 1, which implies that:

sin(tz;) >0
tz; > sin~1(0)

This implies that
O<tz; <mor2m <tz <3mordm <tz <5bdm...
Written succinctly, it must be that 0 4+ a;27 < tz; < 7+ a;2m,a; €

[0,1,2,...,00).
Now, consider the case when f;z; = —1. In this case it must be that:

sin(tz;) <0
tz; < sin”1(0)

This implies that:

T <tz;<2mwor3m <tz <4mordbr <tz <6m...

Written succinctly, it must be that © + ;27 < tz; < 27 4 a;27,0; €
[0,1,2,...,00).
Now, let y; = fi(z;) and let V), = {y; : i € [1,...n]}. For a given ), we can
write a set of n inequalities:

0+ a2 <tz; <7+ 2a;m, y; =1
T+ a2m < tz; < 2w+ 2a;m, y; = —1

Substituting for z;, this becomes:



0+ai27r<t%<7r—|—2ai7r, y; =1
7T+ai27r<t% < 2w+ 2a;m, Yy, = —1

Let t = km, we can then write the set of equations as:

0—|—ai2ﬂ'<kﬂ'% <7m+42a;m, y;=1
T+ a21 < kﬂ'% <2+ 2a;m, Yy = —1

and this is equal to:

O+ai2<k%<1+2ai, v =1
1+a2<kyp <2+42a;, y=-1

We add 1 to the top equation to get:

l+a2<1+& <2424, yi=1
l+a2<2<2+2a, y=-1

Finally, for convenience, subtract 2a; from both equations to get:

1<1l+%-20;<2, y =1
1< & —-20<2, y=-1

Now, let YV = {y1,...,yn} be a set of any arbitrary labelings for the
points in Z,,. Note, that there are 2" such labelings. I will now prove that
it is possible to find a solution to the set of equations defined directly above
for all such labelings.

In general, if y; = 1, we can say the following:

k
1<1+§—2a1<2

2 < 2 4 | — 21l < 21
0<k—a 2t <o+l _9f



And if y; = —2, we can say:

k
1<§—2a1<2

2 < | — 2 g < 21t

This is a very important pattern. For a fixed i, we have an alternating set
of ranges for which k can be in if y; = 1, ie: (0,201 —2%) (1 x 201 1 x 211
20l 98) (2 x 20H1 2 x 2iFL 4 2t _98) " We also have an alternating
set of ranges for which k£ can be in if y; = 1. Notice that these ranges are
situated between those for y; = 1, ie: (27,2071, (1 x 21 4201 x 201 ¢
21H1) (2 x 271 427 2 x 201 oty
Further, notice what happens as we move from ranges for ¢ and ranges
for i4+1. The ranges for i+1 are twice as big as the ranges for ¢. Additionally,
the ranges for k when y; 11 = 1 will cover the ranges for £ when y; = 1 and
y; = —1. This also holds for the ranges when y;+; = —1. Thus, no matter
what the label for y;, it will always be possible to find a value of k that
correctly predicts the label for y; and y;+1. This relationship holds for all
i, so it must be that for any arbitrary set ),, we can find a k = tm, such
that f; correctly maps all z € Z, to y € V,,. This is equivalent to saying
s(F,n) = 2" for all n, which implies the VC dimension for F is infinity.
O

Problem 3

(a) We wish to find an e such that P(]X — u| > €) < 6. By Bernstein’s
Inequality, it is sufficient to take an e such that:

2
ne
2eap (-t )<
emp( 2a2+2ce/3> =

2
e > log(2/0)

202 4 2ce/3
2 2clog(2/0)e 202 log(2/9) S

0
3n n -

Hence, it is sufficient to take € such that:



2clog(2/5 2 802 log(2/6
clog(2/6) ( iﬁ”) - S log2/)
€ > +
3n 4

Remembering that /2 +y < /z + /¥, it is sufficient to take € such
that:

2
> 2clog(2/6) n 202 log(2/9)

3n n

(b) We wish to show that:

Ve >0,3C > 0: P(n|X, — pn| > C) < e

First, observe that since X; are dicotomic, |X;| < 1. Next, if we call
P(Y; € Ay) = pn, 02 < pp(1 —pp) < pp. Also call M = sup f and
observe that, p, < % and, thus, 02 < % Hence, by Bernstein’s In-

equality:

C c?
P(| Xy — pin] > E) < 2exp <—ﬁ)

n 3n

_ C C
P(|X, — —) <2 —_—
(%0 = il > £ < 200 (~ s

The result follows observing that 2exp (_QM/ g+2/3> C—oo 0.

Problem 4

(Rademacher Complexity). Let F = {f1,..., fn} where each f is a binary
function: f(z) € {0,1}. Show that




Proof. From theorem 42.33 in the notes, we know that:

2log(s(F,n))

Rn(F) -

For a finite set of functions F = {f1, ..., fy} it must be that s(F,n) < N
as it is impossible to produce more unique labelings than there are functions
in the set.

Thus, it immediately follows that:

R(F) < \/QIOg(N) <2\/log]\7

n n



