
Analysis of Histogram and Decision Tree classifiers

1 Empirical Risk Minimizer (ERM)

We will consider the classifier ĥ(x) that minimize the empirical risk over a class of classifiers H, i.e.

ĥ(x) = arg min
h∈H

R̂(h)

We can use concentration of measure arguments (e.g. the VC theorem) to get a uniform bound
on the deviation of true risk R(h) and empirical risk R̂(h) for all classifiers h ∈ H: With probability
> 1− δ,

sup
h∈H
|R̂(h)−R(h)| ≤ εH

where εH depends on the complexity of the class H such as its VC dimension, cardinality, growth
function, etc., and number of training data n.

We can use this bound to analyze the risk for ERM as follows: With probability > 1− δ,

R(ĥ) ≤ R̂(ĥ) + εH

≤ R̂(h) + εH ∀h ∈ H
≤ R(h) + 2εH ∀h ∈ H

This implies that with probability > 1− δ,

R(ĥ) ≤ inf
h∈H

R(h) + 2εH

i.e. the ERM classifier is almost as good as the best classifier in the class H and the gap depends
on the complexity of the class. Smaller the class, smaller the gap (easier it is to find the classifier).

2 Decomposing the overall error

Ideally, we want the risk of our classifier to be as close to the Bayes risk as possible, i.e. we are
interested in bounding the excess risk:

E(ĥ) = R(ĥ)−R∗

To obtain bounds on the excess risk, we typically analyze its decomposition into two terms:

E(ĥ) = R(ĥ)−R∗ =

[
R(ĥ)− inf

h∈H
R(h)

]
+

[
inf
h∈H

R(h)−R∗
]

The first term denotes the approximation error (equivalent to bias) and the second term denotes the
estimation error (equivalent to variance). Notice that the more complex the class H, smaller is the
approximation error, but larger the estimation error (as discussed in previous section, estimation
error is bounded by 2εH). This is akin to bias-variance tradeoff.
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3 Histogram Classifier

Let Hm := {all classifiers built on a uniform partition of the domain into md bins}, i.e. a classifier
h ∈ Hm is either 0 or 1 on each bin. Consider the ERM classifier:

ĥ(x) = arg min
h∈Hm

R̂(h)

It is easy to check that the Histogram classifier ĥ is essentially a majority vote on each bin. To
analyze its performance, notice that the VC dimension of Hm is md since the class can shatter
(generate all possible labelings for) a set of md points. Alternatively, notice that |Hm| = 2m

d
.

Therefore, we have using VC theorem, with high probability

R(ĥ) ≤ inf
h∈Hm

R(h) +O

(√
md log n

n

)

This provides a bound on the estimation error for the Histogram classifier.

4 Decision Tree Classifier

Let Tk := {all decision tree classifiers with k leaves i.e. partition of the domain into k bins}, (a clas-
sifier t ∈ Tk is either 0 or 1 on each bin. Consider the ERM classifier:

t̂(x) = arg min
t∈Tk

R̂(t)

To analyze its performance, notice that the VC dimension of Tk can be upper bounded as k(d+ 1)
since each split is a linear threshold classifier and hence can shatter (generate all possible labelings
for) a set of additional d+ 1 points. Therefore, we have using VC theorem, with high probability

R(t̂) ≤ inf
t∈Tk

R(t) +O

(√
kd log n

n

)

This provides a bound on the estimation error for the ERM Decision Tree classifier.

5 Box-counting dimension and Lipschitz boundaries

To characterize the approximation error infh∈HR(h)−R∗, we need to place some mild assumptions
on the Bayes decision boundary (the decision boundary of the Bayes optimal classifier). Just
as in regression, we assume the regression function has a bounded derivative or is Lipschitz, in
classification we will assume that the Bayes decision boundary is essentially Lipschitz.

However, notice that the boundary may not have a functional form (see Figure 5), so we may
not be able to assume that the boundary is Lipschitz. But we use an equivalent notion and say that
the Bayes decision boundary has box-counting dimension d − 1. Formally, if we assume that the
domain is a hypercube i.e. x ∈ [0, 1]d, then a curve has box-counting dimension α if the number of
bins of size 1/m needed to cover the boundary is O(mα). Essentially, this says that the boundary
is a d− 1 dimensional curve embedded in d dimensions.
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Figure 1: Two figures showing Bayes decision boundaries: h∗(x) = 1 if x lies in black region and is
0 otherwise. In the first figure, the decision boundary can be characterized as a function in one of the
coordinates. In the second figure, it is not possible to describe the boundary in a functional form.

To see the equivalence to Lipschitz functional assumption, consider d = 2 and let the boundary
be a Lipschitz function in one of the two features, i.e. |f(x)−f(x′)| ≤ C|x−x′|. Now if that feature
changes by 1/m, then the Lipschitz function can only change by O(1/m) by definition. Therefore,
the function restricted to 1/m of the domain can be covered by O(1) boxes. To cover the entire
function on the domain, we need O(m) boxes. More generally, in d-dimensions, we can consider
the boundary be a Lipschitz function in d − 1 of the d features. Now if each of the d − 1 features
changes by 1/m, then the Lipschitz function can only change by O(1/m) by definition. Therefore,
the function restricted to 1/md−1 of the domain can be covered by O(1) boxes. To cover the entire
function on the domain, we need O(md−1) boxes. The box-counting assumption is more general
and holds for boundaries that may not have a functional form.

6 Rate of convergence comparison for Histogram vs. Decision
Tree Classifier

We are now ready to investigate the approximation error of histogram and decision tree classifiers
under the assumption that the box-counting dimension of the Bayes decision boundary is d−1, i.e.
the Bayes decision boundary is a d−1 dimensional curve in d dimensions. Without loss of generality,
we also assume that the domain is [0, 1]d. Extension to any compact domain is straight-forward.
Also, we assume that the marginal density is bounded p(x) ≤ B.

Lets first consider the histogram case. Notice that the approximation error is infh∈Hm R(h) −
R∗ = R(h̄)−R∗, the best fit of a classifier built on a uniform partition of the domain into md bins.
The best classifier h̄ in the histogram class will only differ from the Bayes classifier in the bins that
intersect the boundary (since the best classifier is restricted to have a constant label in each bin).
Thus, the approximation error is given as: (here 1(A) denotes indicator of set A)

inf
h∈Hm

R(h)−R∗ = E[|2m(X)− 1/2|1(h̄ 6= h∗)] ≤ P (h̄ 6= h∗)

≤ Bvol({x : h̄(x) 6= h∗(x)) � B ×md−1 ×m−d = O(m−1)
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Thus, for histogram classifier we have the following bound on the excess risk: With high probability,

R(ĥ)−R∗ = O

(
1

m
+

√
md log n

n

)

Thus, the best bin-width which balances the approximation and estimation error is given as 1/m �
n−1/(d+2). And the risk of the histogram classifier converges to the Bayes risk at a rate n−1/(d+2).
(Notice that the rate of MSE convergence of a kernel regression estimator was n−2/(d+2)) and the
classification error of the plug-in histogram classifier is indeed square-root of this.)

Now consider decision trees. Specifically, lets restrict attention to dyadic decision trees, where
the splits only occur at mid-points. Let t̄ denote the best fit of a classifier built on a non-uniform
partition of the domain into k bins, i.e. best fit of a tree classifier with k leaves. Sine the trees are
dyadic, the best classifier t̄ in the tree class can be obtained by taking the corresponding histogram
classifier h̄ and pruning any leaves that don’t intersect the boundary. Since the number of bins that
intersect the boundary is O(md−1), it can be shown that the best tree classifier t̄ has k = O(md−1)
leaves1. Again t̄ will only differ from the Bayes classifier in the bins that intersect the boundary
(since the best classifier is restricted to have a constant label in each bin). Thus, the approximation
error is

inf
t∈Tk

R(h)−R∗ = O(m−1)

Thus, for histogram classifier we have the following bound on the excess risk: With high probability,

R(ĥ)−R∗ = O

(
1

m
+

√
md−1 log n

n

)

Thus, the best #splits k � md−1 which balances the approximation and estimation error is given
by 1/m � n−1/(d+1). And the risk of the histogram classifier converges to the Bayes risk at a rate
n−1/(d+1). Thus, decision trees offer a better bias-variance tradeoff than histogram classifier for
decision boundaries that have box-counting dimension d− 1.

For tree classifiers, the rate n−1/(d+1) can be improved further to n−1/d using better procedures.
In fact, n−1/d is the minimax optimal rate of convergence for any classifier under the box-counting
assumption. Thus, decision tree classifiers are minimax optimal. However, they are computationally
more challenging - the computational complexity scales exponentially in the dimension d and hence
are typically used for low-dimensional settings only.

1This follows by bounding the number of leaves that t̄ has at each level by the number of leaves at each level that
can intersect the boundary, and summing over all levels
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