
Undirected Graphical Models - Representation

What are undirected graphical models?

Consider a random vector X = (X1, . . . , Xp) with a multivariate distribution PX . An undirected
graphical model is a multivariate distribution together with an undirected graph that encodes (a
subset of) conditional independence1 relations implied by this distribution. The undirected graph
G = (V,E) associated with the distribution consists of |V | = p nodes (each node is associated with
a random variable), and the edges E in the graph encode the conditional independence relations
as described next.

Undirected graphical models are also referred to as Markov random fields or Markov networks,
due to the markov properties discussed below 2.

What conditional independence relations are encoded by the graph?

Pairwise Markov Property - An edge between two nodes Xi and Xj is absent in the graph if and
only if Xi and Xj are conditionally independent given the other variables, i.e. Xi ⊥ Xj |X\i\j .

Notice that the complete graph encodes no conditional independence assumptions. It is the absence
of edges that makes a graphical representation useful for describing the distribution.

Are pairwise Markov relations the only conditional independence relations encoded by the graph?
No, there are more. We can read off all the conditional independence relations encoded by the
graph as follows.

Global Markov Property - For any disjoint vertex subsets A, B, and C in the graph G such that C
separates A and B (i.e. every path between a node in A and a node in B passes through a node in
C), the random variables XA are conditionally independent of XB given XC , i.e. XA ⊥ XB|XC ,
where XA = {Xv}v∈A.

We can also define a set of local Markov independencies as follows.
Local Markov Property - The random variable associated with a node Xi is independent of the rest
of the nodes in the graph given its immediate neighbors Ni, i.e. Xi ⊥ X\i\Ni

|XNi .

1When we refer to conditional independence relations, we also include any independence relations (conditioned on
the empty set).

2Sometimes people refer to a collection of random variables as a Markov random field, which basically implies
that they are distributed according to a distribution which admits an undirected graphical model representation.
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Notice that pairwise Markov property is weaker than local Markov property which is weaker
than the global Markov property. However, for positive distributions PX > 0 (i.e. it does not assign
zero probability to any assignment of the variables),the three properties are equivalent.

Is there an easy characterization of distributions that satisfy the
conditional independence relations encoded by a graph?

Let IG denote the set of all conditional independence relations encoded by the graph G, i.e. relations
you can read off using the Global Markov property. Let IP denote the set of all conditional inde-
pendence relations implied by the distribution PX . A graph G is called an I-map for a probability
distribution PX if all conditional independence relations implied byG hold true for PX , i.e. IG ⊆ IP .

Definition. A probability distribution factors with respect to a graph in case it can be writ-
ten as a product of factors, one for each of the cliques C in the graph:

P (X1, ..., Xp) = ΠCφC(XC).

Theorem. For any undirected graph G, a distribution PX that factors with respect to the graph
also satisfies the global Markov property on the graph. Equivalently, G is an I-map for PX .

The other direction is known as Hammersley-Clifford Theorem and only holds for positive dis-
tributions.
Theorem (Hammersley-Clifford-Besag): If PX > 0 is a positive distribution (does not assign
zero probability to any assignment of the variables), then if G is an I-map for PX , then PX factorizes
over G.

Can the graph encode all conditional independence relations im-
plies by the distribution?

If PX factorizes over G, then G is an I-map for PX , i.e. IG ⊆ IP . The converse is not necessarily
true, i.e. there are conditional independence relations implied by the distribution PX that may not
be encoded by the graph (its I-map). For example, a trivial example is the complete graph which
is an I-map for every distribution (since the set of conditional independence relations implied by
G, IG = ∅), but it encodes no conditional independence relations implied by PX . Therefore, we are
usually interested in the minimal I-map, i.e. an I-map from which none of the edges could be
removed without destroying its I-mapness. It is reasonable to require this as it leads to the most
compact graph representation, which involves as few dependencies as possible. Every distribution
has a unique minimal I-map which can be found as follows:

Let P > 0. Define G to be the graph obtained by introducing edges between all pairs of
variables Xi, Xj such that Xi ⊥ Xj |X\i\j . Then G is the unique minimal I-map.

We may now ask if the minimal I-map encodes all of the independencies implied by PX . If G implies
no dependencies that are not indicated by PX , then G represents precisely the set of conditional
independence relations indicated by PX , i.e. IG = IP . In this case, G is called a perfect map of
PX , or alternatively PX is said to be faithful to G. The following theorem due to Meek says that
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almost all multinomial and multivariate normal distributions are faithful to their minimal I-map.
This result probably extends to all parametric distributions, but I don’t know of such a proof.

Theorem (Meek): The set of multinomial and multivariate normal distributions which are un-
faithful to their I-map (graph G) has measure zero, i.e. the set of such parameters has Lebesgue
measure zero.

However, there exist distributions for which the perfect map may not exist. For example, con-
sider the following distribution:

P (A,B,C) = P (A)P (B)P (C|A,B)

In the undirected graph corresponding to this distribution, we must have an edge between A and
C, and between B and C. Can we omit the edge between A and B? No, because A and B are
dependent given C. Therefore, the only minimal I-map for this distribution is the fully connected
graph, which does not capture the marginal independence (A ⊥ B) that holds in P .

Note: Meek’s result should be taken with a grain of salt - it only says that if we consider a fixed
graph and a set of parameters from the multinomial and multivariate normal distributions. Now
consider any smooth distribution (dominated by the Lebesgue measure) over the possible parame-
ter values. Then the probability of drawing an unfaithful distribution is zero. While this result has
clear implications for the existence of faithful distributions and strong completeness of global markov
property, it does not imply that a graphical model can be learnt easily from data. In fact the issue
of reliably inferring a graphical model from data has to do with near violations of faithfulness.

Can all distributions be represented as a graphical model?

Yes, notice that any distribution can be trivially represented by the complete graph, as discussed
above. But this representation is useless as the complete graph does not encode any conditional
independence assumptions that might be implied by the distribution.

In literature, you might read statements like “there are distributions that cannot be represented
by a (directed/undirected) graphical model”. What this means is that these distributions do not
have a perfect-map.

Can all graphs correspond to the graphical representation of a dis-
tribution?

Yes. Given a graph, we can define any clique potentials along with a corresponding normalization
factor which specifies a distribution on the nodes of the graph. Since the distribution factors over
the graph, by the Hammersley-Clifford theorem, such a distribution satisfies all the conditional
independence relations encoded by the graph, and hence the graph is an I-map for the distribution.
It may however not be a perfect map.
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Does the graphical model capture all properties of the distribution?

No. There are many properties that PX can have that are not represented in the graph (i.e. many
properties besides independence relations such as interactions etc.). As an example, a distribution
can be written over cliques or maximal cliques and therefore, does not necessarily capture all
higher-order interactions.
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