
Notes on the Glasso Algorithm

T.K. Huang

2011/02/24

1 Preliminaries

1.1 Schur’s complement

Let

W :=

[

C y

y⊤ a

]

∈ Rp×p,

be a symmetric matrix, where C is the upper-left sub-matrix of dimension (p−1)-by-(p−1),
y is a column vector of length p − 1, and a is a real number. From Schur’s complement, we
have

W−1 =

[

C−1 + C−1
yy

⊤C−1

a−y⊤C−1y
− C−1

y

a−y⊤C−1y

− y
⊤C−1

a−y⊤C−1y
(a − y⊤C−1y)−1

]

.

From Crammer’s rule, we know

(W−1)pp = (−1)2p |C|

|W |
⇐⇒ |W | =

|C|

(W−1)pp

= |C|(a − y⊤C−1y),

where | · | denotes the determinant of a matrix. Therefore,

log |W | = log |C| + log(a − y⊤C−1y). (1)

1.2 Dual norm of the l1 norm

Consider the following two types of norms1:

• l1 norm: ‖X‖1 :=
∑

i,j |Xij|.

• sup norm: ‖X‖∞ := maxi,j |Xi,j|.

1These are entrywise norms, meaning that they treat matrices as vectors. There are also induced or

operator norms that use the same notation but are defined in a different way.

1

These two norms are dual to each other, meaning that

‖Ω‖1 = max
U :‖U‖∞≤1

tr(ΩU),

‖U‖∞ = max
Ω:‖Ω‖1≤1

tr(ΩU).

2 The Glasso algorithm

Let S ∈ Rp×p be a sample covariance matrix. We aim to solve the following regularized
maximum likelihood problem:

min
Ω≻0

L(Ω) := tr(ΩS) − log |Ω| + λ‖Ω‖1. (2)

This is a convex optimization problem: the l1 penalty is convex, the linear term is convex, the
negative log determinant function is convex, and the set of positive semidefinite matrices is
also convex. In particular, (2) is in the form of Semidefinite Programming (SDP) because the
variable is constrained to be a PSD matrix. SDPs are known to be hard convex optimization
problems. Although there exist algorithms for solving general SDPs, such as the interior
point method, most of these algorithms/solvers usually become quite inefficient when the
dimension of the variable matrix exceeds hundreds. Therefore, machine learning researchers
have been focusing specifically on solving (2), and as a result developed the Glasso algorithm.
The main idea of the Glasso algorithm consists of the following three ingredients:

• Instead of the regularized maximum likelihood problem (2), solve its dual problem.

• Decompose the dual problem of (2) into a series of sub-problems, and iteratively solve
the sub-problems until convergence.

• For each sub-problem, solve its dual via the Lasso algorithm.

The first two ingredients are due to [1], while the third is due to [3]. The name “Glasso”
was coined by [3]. In the following we describe the three ingredients in more detail.

2.1 Dual of the regularized maximum likelihood (2)

Re-writing the objective function using the dual of the sup norm, we get

L(Ω) = tr(ΩS) − log |Ω| + λ max
U :‖U‖∞≤1

tr(ΩU)

= tr(ΩS) − log |Ω| + max
U :‖U‖∞≤λ

tr(ΩU)

= − log |Ω| + max
U :‖U‖∞≤λ

tr(Ω(S + U)).

2

Consider the following function:

h(Ω, U) := − log |Ω| + tr(Ω(S + U))

with the domain {Ω, U | Ω ≻ 0, ‖U‖∞ ≤ λ}. Using strong duality, we have

min
Ω≻0

L(Ω) = min
Ω≻0

max
‖U‖∞≤λ

h(Ω, U) = max
‖U‖∞≤λ

min
Ω≻0

h(Ω, U).

Under a fixed U , it is easy to see Ω̂ = (S + U)−1 minimizes h(Ω, U). Plugging Ω̂ back in
h and doing a change of variable by defining W := S + U , we get the dual optimization
problem:

max
W :‖W−S‖∞≤λ,W⊤=W

D(W) := log |W | (3)

Let Σ̂ be the solution to the dual (3). We obtain the estimated precision matrix by Ω̂ = Σ̂−1.
From (1), we can see that Σ̂ii = Sii + λ, i.e., the i-th diagonal element of Σ̂ is the i-th
diagonal element of S plus λ. Therefore, in solving (3) we only need to consider off-diagonal
elements.

2.2 Solving the dual problem by block coordinate descent

The strategy to solve (3) is to optimize one row/column of W (excluding the diagonal
element) at a time, and then iterate over all rows/columns until convergence. By permuting
rows and columns, we can always assume the last row/column of W is currently being
optimized. Using Schur’s complement, we re-write the objective function:

log |W | = log |C| + log(Spp + λ − y⊤C−1y). (4)

Since log(·) is a monotonically increasing function and Spp +λ is a constant, maximizing (4)
over y is equivalent to the following QP:

min
y∈Rp−1

y⊤C−1y, (5)

s.t. ‖y − Sp‖∞ ≤ λ,

where Sp is the p-th column of S excluding Spp.

2.3 Solving each block coordinate descent by Lasso

Solving (5) is not a good idea because we need to do matrix inversion, whose time complexity
grows cubically with p. ([1] points out that when solving the sub-problems iteratively, one
can compute the matrix inversion in quadratic time using rank-one updates). The Glasso
algorithm avoids this difficulty by looking at the dual of the sub-problem:

min
x

1

2
x⊤Cx − S⊤

p x + λ‖x‖1, (6)

3

where the relation between the primal and dual variables is

y = Cx. (7)

To verify that (6) is the dual of (5), we first re-write the constraint in (5) as a set of bound
constraints:

‖y − Sp‖∞ ≤ λ ⇐⇒ −λ + (Sp)i ≤ yi ≤ λ + (Sp)i, i = 1, . . . , p,

and then the Lagrangian:

l(y, α, β) = y⊤C−1y − α⊤(λe + Sp − y) − β⊤(y + λe − Sp),

where αi ≥ 0, βi ≥ 0, i = 1, . . . , p, are the Lagrange multipliers for the inequality constraints
and e is a column vector of ones. Maximizing l(y, α, β) w.r.t y, we get

y = Cx, where x :=

(

β − α

2

)

. (8)

Using the complementary slackness condition, we have that the optimal Lagrange multipliers
must satisfy

αiβi = 0, i = 1, . . . , p,

implying that ‖x‖1 = (α+β)⊤e

2
. Using this fact and plugging (8) back in the Lagrangian, we

get the dual problem (6).

To show that (6) is actually a Lasso problem, we let Q := C1/2, b := 1
2
Q−1Sp, and re-write

(6) as

min
x

1

2
‖Qx − b‖2

2 + λ‖x‖1.

Note that to use the Lasso algorithm we do not need to compute Q and b. In fact, the usual
Lasso algorithm first computes the Hessian and the first-order term from Q and b, but here
we already have them.

Putting everything together, we give a summary of the Glasso algorithm in the follow-
ing:

1. Initialize W := S + λI.

2. Repeat until convergence:
For i = 1 to p,

• Run Lasso to solve the sub-problem (6) with C being the sub-matrix of the current
W excluding the i-th row and column.

• Update the i-th row and column of W by (7)

3. Return the solution Ŵ and Ω̂ = Ŵ−1. The latter is computed by Schur’s complement:
For i = 1 to p,

4

• Let x̂ be the solution to (6) for the i-th row/column and ŷ = Cx̂.

• Compute the i-th row/column of Ω̂ excluding the diagonal element by

Ω̂i = −
x̂

λ + Sii − ŷ⊤x̂
,

and the i-th diagonal element by

Ω̂ii = −
1

λ + Sii − ŷ⊤x̂
.

2.4 Convergence

Theorem 3 of [1] proves the convergence of this particular block coordinate descent procedure
using the convergence result for general block coordinate descent algorithms given by [2].
However, that result requires blocks of variables to be disjoint from one another, which
is not the case here. Nevertheless, [4] gives convergence proofs for a row-by-row type of
block coordinate descent algorithms for solving a class of SDPs, which includes the Glasso
algorithm as a special case. In practice, the Glasso algorithm is observed to converge usually
within a few sweeps over all columns/rows. See [3] for more numerical experiments and
running time results.

References

[1] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-
mum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine

Learning Research, 9:485–516, 2008.

[2] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA 02178-9998,
second edition, 1999.

[3] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008.

[4] Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg. Row by row methods for semidefinite
programming. Technical report, Dept of IEOR, Columbia University, 2009.

5

