10-702/36-702 Midterm Exam Solutions

March 22011

There are five questions. You only need to do three. Circle the three questions you want to be graded:

$$
\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}
$$

Name:

Problem 1: Let X_{1}, \ldots, X_{n} be a random sample where $-B \leq X_{i} \leq B$ for some finite $B>0$. For every real number a define

$$
R(a)=\mathbb{E}|X-a|, \quad \widehat{R}_{n}(a)=\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-a\right| .
$$

Let a_{*} minimize $R(a)$ and let \widehat{a} minimize $\widehat{R}_{n}(a)$. That is,

$$
a_{*}=\underset{-B \leq a \leq B}{\operatorname{argmin}} R(a), \quad \widehat{a}=\underset{-B \leq a \leq B}{\operatorname{argmin}} \widehat{R}_{n}(a) .
$$

In this question you will show that, with high probability, $R(\widehat{a}) \leq R\left(a_{*}\right)+O(\sqrt{\log n / n})$ with high probability.
(a) Let P_{n} be the empirical distribution. Thus $P_{n}(A)=\left(\right.$ number of $\left.X_{i} \in A\right) / n$. Show that

$$
\sup _{-B \leq a \leq B}\left|R(a)-\widehat{R}_{n}(a)\right| \leq 2 B \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right|
$$

where

$$
\mathcal{A}=\left\{\left\{x: g_{a}(x)>t\right\}: a \in[-B, B], t>0\right\}
$$

and $g_{a}(x)=|x-a|$.

Hint: Note that

$$
R(a)=\mathbb{E}\left(g_{a}(X)\right)=\int_{0}^{2 B} \mathbb{P}\left(g_{a}(X)>t\right) d t
$$

and

$$
\widehat{R}_{n}(a)=\int_{0}^{2 B} P_{n}\left(g_{a}(X)>t\right) d t=\int_{0}^{2 B} \frac{1}{n} \sum_{i=1}^{n} I_{g_{a}\left(X_{i}\right)>t} d t
$$

(There is workspace on the next page.)

Workspace for part (a).
Ans.
Using the hint, we know that

$$
\begin{aligned}
\left|R(a)-\widehat{R}_{n}(a)\right| & =\left|\int_{0}^{2 B} P\left(g_{a}(X)>t\right)-P_{n}\left(g_{a}(X)>t\right) d t\right| \\
& \leq \int_{0}^{2 B}\left|P\left(g_{a}(X)>t\right)-P_{n}\left(g_{a}(X)>t\right)\right| d t \\
& \leq \int_{0}^{2 B} \sup _{t \geq 0}^{2 B}\left|P\left(g_{a}(X)>t\right)-P_{n}\left(g_{a}(X)>t\right)\right| d t \\
& =2 B \sup _{t \geq 0}\left|P\left(g_{a}(X)>t\right)-P_{n}\left(g_{a}(X)>t\right)\right|
\end{aligned}
$$

Since this inequality is true for all a, we get that

$$
\begin{aligned}
\sup _{-B \leq a \leq B}\left|R(a)-\widehat{R}_{n}(a)\right| & \leq 2 B \sup _{-B \leq a \leq B} \sup _{t \geq 0}\left|P_{n}\left(g_{a}(X)>t\right)-P\left(g_{a}(X)>t\right)\right| \\
& \leq 2 B \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right|
\end{aligned}
$$

(b) Compute the VC dimension of \mathcal{A}. Ans. \mathcal{A} is defined as $\{\{x:|x-a|>t\}: a \in$ $[-B, B], t>0\}$. This is the set of all two-sided intervals with gap in the center.

Figure 1: Example of an element of the set \mathcal{A}
It is clear that such family of intervals can shatter any set of 2 numbers in $[-B, B]$. Let $x_{1}<x_{2}<x_{3} \in[-B, B]$; it is also easy to see that $\left\{x_{2}\right\}$ cannot be picked out by any elements of \mathcal{A}.

Hence, VC-dimension of \mathcal{A} is 2 .
(c) Recall that if \mathcal{A} has VC dimension d then

$$
\mathbb{P}\left(\sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right|>\epsilon\right) \leq c_{1} n^{d} e^{-c_{2} n \epsilon^{2}}
$$

for some c_{1} and c_{2}. Use this fact, together with the results from (a) and (b) to show that $\sup _{a}\left|\widehat{R}_{n}(a)-R(a)\right|<\epsilon$ with high probability.
NOTE: there was a typo in the bound, it should be n^{d} instead of d^{n} as stated in the exam. We will accept both as correct but only work with n^{d} in the solutions.
Ans.

$$
\begin{aligned}
P\left(\sup _{-B \leq a \leq B}\left|\widehat{R}_{n}(a)-R(a)\right|>\epsilon\right) & \leq P\left(2 B \sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right|>\epsilon\right) \\
& =P\left(\sup _{A \in \mathcal{A}}\left|P_{n}(A)-P(A)\right|>\frac{\epsilon}{2 B}\right) \\
& \leq c_{1} n^{3} \exp \left(-c_{2} n \frac{\epsilon^{2}}{4 B^{2}}\right)
\end{aligned}
$$

Where we used that the VC dimension $d=3$.
(d) Find $z(n)$ such that

$$
R(\widehat{a}) \leq R\left(a_{*}\right)+z(n)
$$

with probability at least $1-\delta$.
Ans. We set $\delta=c_{1} n^{3} \exp \left(-c_{2} n \frac{\epsilon^{2}}{4 B^{2}}\right)$ and work through a little algebra to find that $\epsilon=$ $\sqrt{\frac{4 B^{2}}{n c_{2}}\left(3 \log n+\log \frac{c_{1}}{\delta}\right)}$.

Hence, with probability at least $1-\delta$, we know that for all $a \in[-B, B],\left|\widehat{R}_{n}(a)-R(a)\right| \leq z^{\prime}(n)$ where $z^{\prime}(n)=\sqrt{\frac{4 B^{2}}{n c_{2}}\left(3 \log n+\log \frac{c_{1}}{\delta}\right)}$

By definition of \widehat{a} and a_{*}, we can conclude that with probability at least $1-\delta$:

$$
\begin{aligned}
R(\widehat{a})-R\left(a_{*}\right) & =R(\widehat{a})-\widehat{R}_{n}(\widehat{a})+\widehat{R}_{n}(\widehat{a})-\widehat{R}_{n}\left(a_{*}\right)+\widehat{R}_{n}\left(a_{*}\right)-R\left(a_{*}\right) \\
& \leq\left|R(\widehat{a})-\widehat{R}_{n}(\widehat{a})\right|+\left|\widehat{R}_{n}\left(a_{*}\right)-R\left(a_{*}\right)\right| \\
& \leq 2 z^{\prime}(n)
\end{aligned}
$$

where we used the fact that \widehat{a} is the empirical risk minimizer and hence $\widehat{R}_{n}(\widehat{a}) \leq \widehat{R}_{n}\left(a_{*}\right)$.

Set $z(n)=2 z^{\prime}(n)$ and we get the desired bound.

Problem 2: Let P_{1} and P_{2} be two distributions with densities p_{1} and p_{2}. Recall that $\operatorname{TV}\left(P_{1}, P_{2}\right)=\sup _{A}\left|P_{1}(A)-P_{2}(A)\right|$.
(a) Show that

$$
\int p_{1} \wedge p_{2}=1-\mathrm{TV}\left(P_{1}, P_{2}\right)
$$

where $p_{1}(x) \wedge p_{2}(x)=\min \left\{p_{1}(x), p_{2}(x)\right\}$.
Ans.
Note that for any $A \subset \mathbb{R}, P_{1}(A)-P_{2}(A)=\left(1-P_{1}\left(A^{c}\right)\right)-\left(1-P_{2}\left(A^{c}\right)\right)=P_{2}\left(A^{c}\right)-P_{1}\left(A^{c}\right)$. Hence, $\sup _{A} P_{1}(A)-P_{2}(A)=\sup _{A} P_{2}(A)-P_{1}(A)=\sup _{A}\left|P_{1}(A)-P_{2}(A)\right|$.

Now, $\sup _{A} P_{1}(A)-P_{2}(A)=\sup _{A} \int_{x \in A} p_{1}(x)-p_{2}(x) d x$ and it is clear that $A=\left\{x: p_{1}(x)>\right.$ $\left.p_{2}(x)\right\}$.

$$
\begin{aligned}
1-T V\left(P_{1}, P_{2}\right) & =\int_{A} p_{1}(x) d x+\int_{A^{c}} p_{1}(x) d x-\left(\int_{A} p_{1}(x)-p_{2}(x) d x\right) \\
& =\int_{A^{c}} p_{1}(x) d x+\int_{A} p_{2}(x) d x \\
& =\int p_{1} \wedge p_{2} d x
\end{aligned}
$$

Where the last equality follow from the observation that $A=\left\{x: p_{1}(x)>p_{2}(x)\right\}$ and that $A \cup A^{c}=\mathbb{R}$. We performed our analysis assuming support is \mathbb{R} but it can generalize to any measure space.
(b) Let \mathcal{P} be a set of distributions. Let P_{1} and P_{2} be two arbitrary distributions in \mathcal{P}. Let $X \sim P$ for some $P \in \mathcal{P}$. Let $\theta: \mathcal{P} \rightarrow \mathbb{R}$ and let $\widehat{\theta}=\widehat{\theta}(X)$ denote an estimator of $\theta(P)$. Show that

$$
\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P}|\widehat{\theta}-\theta(P)| \geq \frac{\left|\theta\left(P_{1}\right)-\theta\left(P_{2}\right)\right|}{4}\left(1-\operatorname{TV}\left(P_{1}, P_{2}\right)\right)
$$

Ans. We first finitize and discretize:

$$
\begin{aligned}
\inf _{\widehat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P}|\widehat{\theta}(X)-\theta(P)| & \geq \inf _{\hat{\theta}} \max _{P \in\left\{P_{1}, P_{2}\right\}} \mathbb{E}_{P}|\widehat{\theta}(X)-\theta(P)| \\
& \geq \inf _{Z} \max _{P_{i} \in\left\{P_{1}, P_{2}\right\}} P_{i}(Z(X) \neq i) \frac{\left|\theta\left(P_{1}\right)-\theta\left(P_{2}\right)\right|}{2} \\
& \geq \inf _{Z}\left[P_{1}(Z(X) \neq 1)+P_{2}(Z(X) \neq 2)\right] \frac{\left|\theta\left(P_{1}\right)-\theta\left(P_{2}\right)\right|}{4}
\end{aligned}
$$

where Z is a binary function of the data.

By Neyman-Pearson lemma, the estimator Z^{*} that minimizes $P_{1}(Z(X) \neq 1)+P_{2}(Z(X) \neq 2)$ is $Z^{*}(X)=1$ if $p_{1}(X)>p_{2}(X)$ and $Z^{*}(X)=2$ if $p_{2}(X)>p_{1}(X)$.

Hence, $P_{1}\left(Z^{*}(X) \neq 1\right)=\int_{x: p_{1}(x)<p_{2}(x)} p_{1}(x) d x$ and $P_{2}\left(Z^{*}(X) \neq 2\right) \geq \int_{x: p_{2}(x)<p_{1}(x)} p_{2}(x) d x$.
Combining these two results, we have that $P_{1}\left(Z^{*}(X) \neq 1\right)+P_{2}\left(Z^{*}(X) \neq 2\right)=\int p_{1} \wedge p_{2} d x$
Thus, $\inf _{Z}\left[P_{1}(Z(X) \neq 1)+P_{2}(Z(X) \neq 2)\right] \geq \int p_{1} \wedge p_{2} d x$ and we get the desired bound.

Problem 3. In class, we saw that a kernel density estimate can achieve a mean square error (MSE) rate of $n^{-2 /(2+d)}$ for Lipschitz densities. The same rate is true for a histogram density estimate as well. Moreover if the density has compact support, the same is true for mean integrated square error (MISE) $\mathbb{E}\left[\int|\widehat{p}(x)-p(x)|^{2} d x\right]$ which is a global measure of accuracy.

In this problem, you will derive the rate of MISE convergence for densities that are piecewisesmooth, i.e. they are Lipschitz everywhere, except for a few points where the densities can have a discontinuity.
Consider univariate ($d=1$) densities supported on the unit interval $[0,1]$ that satisfy $\mid p(x)-$ $p\left(x^{\prime}\right)|\leq L| x-x^{\prime} \mid$ for all $x \in[0,1]$, except for N (a finite number of) points where it may jump. You may assume that the density is bounded from above, i.e. $p(x) \leq B<\infty$. Consider a histogram density estimator based on n samples $\left\{X_{i}\right\}_{i=1}^{n}$ drawn i.i.d. from the density as follows:

$$
\widehat{p}(x)=\sum_{j=1}^{m} \widehat{p}_{j} I\left(x \in B_{j}\right) \text { where } \widehat{p}_{j}=\frac{m}{n} \sum_{i=1}^{n} I\left(X_{i} \in B_{j}\right)
$$

and $B_{1}=[0,1 / m), B_{2}=[1 / m, 2 / m), \ldots, B_{m}=[(m-1) / m, 1)$. Denote its mean by $\bar{p}(x)=$ $\mathbb{E}[\widehat{p}(x)]$.
(a) Compute the integrated square bias $\int|\bar{p}(x)-p(x)|^{2} d x$ of the histogram density estimator.

Ans. We first look at $\bar{p}(x)$:

$$
\bar{p}(x)=\mathbb{E}[\widehat{p}(x)]=\sum_{j=1}^{m} \mathbb{E}\left[\widehat{p}_{j}\right] I\left(x \in B_{j}\right)=\sum_{j=1}^{m} m P\left(B_{j}\right) I\left(x \in B_{j}\right)
$$

where $P\left(B_{j}\right):=\int_{y \in B_{j}} p(y) d y$. Then, we have the integrated squared bias

$$
\int|\bar{p}(x)-p(x)|^{2} d x=\int\left|\sum_{j=1}^{m} m P\left(B_{j}\right) I\left(x \in B_{j}\right)-p(x)\right|^{2} d x=\sum_{j=1}^{m} \int_{x \in B_{j}}\left|m P\left(B_{j}\right)-p(x)\right|^{2} d x
$$

For each B_{j}, let us consider two cases.
(1) B_{j} contains none of the N discontinuities. Using the Lipschitz property, we get

$$
\begin{aligned}
\int_{x \in B_{j}}\left|m P\left(B_{j}\right)-p(x)\right|^{2} d x & =\int_{x \in B_{j}}\left|m \int_{y \in B_{j}}(p(y)-p(x)) d y\right|^{2} d x \\
& \leq \int_{x \in B_{j}}\left(m \int_{y \in B_{j}}|p(y)-p(x)| d y\right)^{2} d x \\
& \leq \int_{x \in B_{j}}\left(m \int_{y \in B_{j}} \frac{L}{m} d y\right)^{2} d x \\
& \leq \int_{x \in B_{j}} \frac{L^{2}}{m^{2}} d x=\frac{L^{2}}{m^{3}}
\end{aligned}
$$

(2) B_{j} contains at least one of the N discontinuities. Using the assumption that $p(x) \leq$ $B<\infty$, we get

$$
\begin{aligned}
\int_{x \in B_{j}}\left|m P\left(B_{j}\right)-p(x)\right|^{2} d x & =\int_{x \in B_{j}}\left|m \int_{y \in B_{j}}(p(y)-p(x)) d y\right|^{2} d x \\
& \leq \int_{x \in B_{j}}\left(m \int_{y \in B_{j}}|p(y)-p(x)| d y\right)^{2} d x \\
& \leq \int_{x \in B_{j}}\left(m \int_{y \in B_{j}} B d y\right)^{2} d x \\
& \leq \int_{x \in B_{j}} B^{2} d x=\frac{B^{2}}{m}
\end{aligned}
$$

Since N is finite, we have that

$$
\int|\bar{p}(x)-p(x)|^{2} d x \leq \frac{c N B^{2}}{m}
$$

for some constant c and large m.
(b) Compute the integrated variance $\int \mathbb{E}\left[|\widehat{p}(x)-\bar{p}(x)|^{2}\right] d x$.

Ans.

$$
\begin{aligned}
\int \mathbb{E}\left[|\widehat{p}(x)-\bar{p}(x)|^{2}\right] d x & =\int \mathbb{E}\left[\left|\sum_{j=1}^{m}\left(\widehat{p}_{j}-m P\left(B_{j}\right)\right) I\left(x \in B_{j}\right)\right|^{2}\right] d x \\
& =\sum_{j=1}^{m} \frac{\mathbb{E}\left[\left|\widehat{p}_{j}-m P\left(B_{j}\right)\right|^{2}\right]}{m} \\
& =\sum_{j=1}^{m} m \mathbb{E}\left[\left|\frac{\widehat{p}_{j}}{m}-P\left(B_{j}\right)\right|^{2}\right] \\
& =\sum_{j=1}^{m} m \mathbb{V}\left[\frac{\sum_{i=1}^{n} I\left(X_{i} \in B_{j}\right)}{n}\right] \\
& =\sum_{j=1}^{m} \frac{m}{n} P\left(X \in B_{j}\right)\left(1-P\left(X \in B_{j}\right)\right) \\
& \leq \sum_{j=1}^{m} \frac{m}{n} P\left(X \in B_{j}\right)=\frac{m}{n} .
\end{aligned}
$$

(c) Derive the rate of mean integrated square error (MISE) convergence.

Ans. The MISE is the integrated squared bias plus the integrated variance. To get the
optimal m, we let

$$
\frac{m}{n}=\frac{c N B^{2}}{m} \quad \Longleftrightarrow \quad m=B \sqrt{c N} \sqrt{n}
$$

leading to MISE $\in O\left(n^{-1 / 2}\right)$.
(d) How does this rate compare to the MISE rate for estimating a Lipschitz smooth density? Comment.
Ans. The MISE rate for estimating a Lipschitz smooth density, when $d=1$, is $n^{-2 / 3}$, which is faster than our rate $n^{-1 / 2}$ here. The reason is that discontinuous points increase the bias in the estimate from $O\left(1 / m^{2}\right)$, which is the case for smooth densities, to $O(1 / m)$. The variances in both cases are the same.

Problem 4. Let $\mathbf{x}^{\top}=\left[\mathbf{x}_{A}^{\top} \mathbf{x}_{B}^{\top}\right]$ be a random vector following a zero-mean Gaussian distribution with precision (inverse covariance)

$$
\Omega=\left[\begin{array}{ll}
\Omega_{A A} & \Omega_{A B} \\
\Omega_{B A} & \Omega_{B B}
\end{array}\right],
$$

where A and B form a partition of the variables.
(a) Write the conditional density $p\left(\mathbf{x}_{A} \mid \mathbf{x}_{B}\right)$ in terms of $\Omega_{A A}, \Omega_{A B}, \Omega_{B A}, \Omega_{B B}$.

Ans.

$$
\begin{aligned}
& \log p\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right) \\
\propto & -\frac{1}{2}\left[\mathbf{x}_{A}^{\top} \mathbf{x}_{B}^{\top}\right]\left[\begin{array}{ll}
\Omega_{A A} & \Omega_{A B} \\
\Omega_{B A} & \Omega_{B B}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{A} \\
\mathbf{x}_{B}
\end{array}\right] \\
= & -\frac{1}{2}\left(\mathbf{x}_{A}^{\top} \Omega_{A A} \mathbf{x}_{A}+2 \mathbf{x}_{B}^{\top} \Omega_{B A} \mathbf{x}_{A}+\mathbf{x}_{B}^{\top} \Omega_{B B} \mathbf{x}_{B}\right) \\
= & -\frac{1}{2}\left(\left(\mathbf{x}_{A}+\Omega_{A A}^{-1} \Omega_{A B} \mathbf{x}_{B}\right)^{\top} \Omega_{A A}\left(\mathbf{x}_{A}+\Omega_{A A}^{-1} \Omega_{A B} \mathbf{x}_{B}\right)+\mathbf{x}_{B}^{\top}\left(\Omega_{B B}-\Omega_{B A}\left(\Omega_{A A}\right)^{-1} \Omega_{A B}\right) \mathbf{x}_{B}\right) .
\end{aligned}
$$

This suggests that the marginal distribution $p\left(\mathbf{x}_{B}\right)$, obtained by integrating $p\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$ over \mathbf{x}_{A}, is a zero mean Gaussian with inverse covariance

$$
\Omega_{B B}-\Omega_{B A}\left(\Omega_{A A}\right)^{-1} \Omega_{A B},
$$

which then gives that

$$
p\left(\mathbf{x}_{A} \mid \mathbf{x}_{B}\right)=\frac{p\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)}{p\left(\mathbf{x}_{B}\right)}=\mathcal{N}\left(-\Omega_{A A}^{-1} \Omega_{A B} \mathbf{x}_{B}, \Omega_{A A}^{-1}\right)
$$

(b) Show that the precision matrix of \mathbf{x}_{A} given \mathbf{x}_{B} does NOT depend on the value of \mathbf{x}_{B}. Ans. From (a) we know the precision matrix of \mathbf{x}_{A} given \mathbf{x}_{B} is $\Omega_{A A}$, which does not depend on the value of \mathbf{x}_{B}.
(c) Write the marginal density $p\left(\mathbf{x}_{A}\right)$ in terms of $\Omega_{A A}, \Omega_{A B}, \Omega_{B A}, \Omega_{B B}$.

Ans. Switching \mathbf{x}_{A} and \mathbf{x}_{B} in the derivation in (a), we get that

$$
p\left(\mathbf{x}_{A}\right)=\mathcal{N}\left(\mathbf{0},\left(\Omega_{A A}-\Omega_{A B}\left(\Omega_{B B}\right)^{-1} \Omega_{B A}\right)^{-1}\right)
$$

(d) Assume the variables in \mathbf{x}_{A} are mutually independent of one another conditioning on \mathbf{x}_{B}. Would the variables in \mathbf{x}_{A} be mutually independent? Why or why not?
Ans. The variables in \mathbf{x}_{A} are mutually independent of one another conditioning on \mathbf{x}_{B} if and only if the precision matrix of the condition distribution, which has been shown in (a) to be $\Omega_{A A}$, is diagonal. The variables in \mathbf{x}_{A} are mutually independent if and only if the precision matrix of the marginal, $\Omega_{A A}-\Omega_{A B}\left(\Omega_{B B}\right)^{-1} \Omega_{B A}$, is diagonal. Obviously, $\Omega_{A A}$ being diagonal does not guarantee $\Omega_{A A}-\Omega_{A B}\left(\Omega_{B B}\right)^{-1} \Omega_{B A}$ to be diagonal, so the answer is no.

Problem 5. Let $Y \in \mathbb{R}^{n}$ and $X \in \mathbb{R}^{p \times n}$. The Lasso problem is to solve, for a given regularization parameter λ,

$$
\Phi(\lambda)=\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2 n}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1} .
$$

In this problem, we show that one can equivalently solve

$$
\Psi(t)=\min _{\beta \in \mathbb{R}^{p}:\|\beta\|_{1} \leq t} \frac{1}{2 n}\|Y-X \beta\|_{2}^{2} .
$$

(a) Show that both optimizations are convex. Ans.

We know that $h(x)=\|x\|_{2}^{2}$ is convex since gradient of f at x_{0} is $2 x_{0}$ and the Hessian of f at x_{0} is $2 I d$.

Since composition of a convex function with an affine function is convex, we know that $f(\beta)=\|Y-X \beta\|_{2}^{2}$ is convex for all Y, X.

Finally, since $\|\cdot\|_{1}$ is a norm, it is convex and thus, $\Phi(\lambda)$ contains a convex optimization. Likewise, the constraint in $\Psi(t)$ is convex and thus the second optimization is convex as well.
(b) Prove that for a fixed t_{0}, there exist a unique λ_{0} such that if $\widehat{\beta}$ minimizes $\frac{1}{2 n}\|Y-X \beta\|_{2}^{2}$ for $\|\beta\|_{1} \leq t_{0}$ then $\widehat{\beta}$ also minimizes $\frac{1}{2 n}\|Y-X \beta\|_{2}^{2}+\lambda_{0}\|\beta\|_{1}$. Show that

$$
\lambda_{0}=\operatorname{argsup}_{\lambda \geq 0} \Phi(\lambda)-\lambda t_{0} .
$$

(Hint: Use strong duality.)
Ans. We first take the constrained form and write down the Lagrangian:

$$
\begin{aligned}
\mathrm{E}(\beta, \lambda) & =\frac{1}{2 n}\|Y-X \beta\|_{2}^{2}+\lambda\left(\|\beta\|_{1}-t_{0}\right) \\
& =\frac{1}{2 n}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}-\lambda t_{0}
\end{aligned}
$$

Since both optimizations are convex, by strong duality we have

$$
\Psi\left(t_{0}\right)=\min _{\beta} \sup _{\lambda} L(\beta, \lambda)=\sup _{\lambda} \min _{\beta} L(\beta, \lambda)=\sup _{\lambda} \Phi(\lambda)-\lambda t_{0}
$$

Let $\left(\beta^{*}, \lambda_{0}\right)$ be a pair of primal-dual optimal solution. Then by KKT conditions, it must be that subgradient of $L\left(\beta, \lambda_{0}\right)$ at β^{*} contains 0 and hence β^{*} is the global optimum of the optimization in $\Phi\left(\lambda_{0}\right)$.

Since λ_{0} is the dual optimum, it must be that λ_{0} optimizes $\sup _{\lambda} \Phi(\lambda)-\lambda t_{0}$.

By strong duality, we know that λ_{0} is global dual optimum, and by the fact that $\Phi(\lambda)-\lambda t_{0}$ is strongly convex in λ, we know that λ_{0} is unique.
(c) Is it true that $\Psi\left(t_{0}\right)=\Phi\left(\lambda_{0}\right)$? Explain.

Ans. $\Phi\left(\lambda_{0}\right)=\Psi\left(t_{0}\right)+\lambda_{0} t_{0}$ and hence the two are not equal.
(Extra Blank Paper.)

