
10-702/36-702
Midterm Exam Solutions

March 2 2011

There are five questions. You only need to do three. Circle the three questions
you want to be graded:

1 2 3 4 5

Name:
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Problem 1: Let X1, . . . , Xn be a random sample where −B ≤ Xi ≤ B for some finite
B > 0. For every real number a define

R(a) = E|X − a|, R̂n(a) =
1

n

n∑
i=1

|Xi − a|.

Let a∗ minimize R(a) and let â minimize R̂n(a). That is,

a∗ = argmin
−B≤a≤B

R(a), â = argmin
−B≤a≤B

R̂n(a).

In this question you will show that, with high probability, R(â) ≤ R(a∗)+O(
√

log n/n) with
high probability.

(a) Let Pn be the empirical distribution. Thus Pn(A) = (number of Xi ∈ A)/n. Show that

sup
−B≤a≤B

|R(a)− R̂n(a)| ≤ 2B sup
A∈A
|Pn(A)− P (A)|

where

A =

{
{x : ga(x) > t} : a ∈ [−B,B], t > 0

}
and ga(x) = |x− a|.

Hint: Note that

R(a) = E(ga(X)) =

∫ 2B

0

P(ga(X) > t)dt

and

R̂n(a) =

∫ 2B

0

Pn(ga(X) > t)dt =

∫ 2B

0

1

n

n∑
i=1

Iga(Xi)>tdt.

(There is workspace on the next page.)
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Workspace for part (a).

Ans.

Using the hint, we know that

|R(a)− R̂n(a)| = |
∫ 2B

0

P (ga(X) > t)− Pn(ga(X) > t)dt|

≤
∫ 2B

0

|P (ga(X) > t)− Pn(ga(X) > t)|dt

≤
∫ 2B

0

sup
t≥0
|P (ga(X) > t)− Pn(ga(X) > t)|dt

= 2B sup
t≥0
|P (ga(X) > t)− Pn(ga(X) > t)|

Since this inequality is true for all a, we get that

sup
−B≤a≤B

|R(a)− R̂n(a)| ≤ 2B sup
−B≤a≤B

sup
t≥0
|Pn(ga(X) > t)− P (ga(X) > t)|

≤ 2B sup
A∈A
|Pn(A)− P (A)|
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(b) Compute the VC dimension of A. Ans. A is defined as {{x : |x − a| > t} : a ∈
[−B,B], t > 0}. This is the set of all two-sided intervals with gap in the center.

Figure 1: Example of an element of the set A

It is clear that such family of intervals can shatter any set of 2 numbers in [−B,B]. Let
x1 < x2 < x3 ∈ [−B,B]; it is also easy to see that {x2} cannot be picked out by any elements
of A.

Hence, VC-dimension of A is 2.
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(c) Recall that if A has VC dimension d then

P
(

sup
A∈A
|Pn(A)− P (A)| > ε

)
≤ c1n

de−c2nε
2

for some c1 and c2. Use this fact, together with the results from (a) and (b) to show that

supa |R̂n(a)−R(a)| < ε with high probability.

NOTE: there was a typo in the bound, it should be nd instead of dn as stated in the exam.
We will accept both as correct but only work with nd in the solutions.

Ans.

P (sup−B≤a≤B|R̂n(a)−R(a)| > ε) ≤ P (2B sup
A∈A
|Pn(A)− P (A)| > ε)

= P (sup
A∈A
|Pn(A)− P (A)| > ε

2B
)

≤ c1n
3 exp(−c2n

ε2

4B2
)

Where we used that the VC dimension d = 3.
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(d) Find z(n) such that
R(â) ≤ R(a∗) + z(n)

with probability at least 1− δ.
Ans. We set δ = c1n

3 exp(−c2n ε2

4B2 ) and work through a little algebra to find that ε =√
4B2

nc2
(3 log n+ log

c1
δ

).

Hence, with probability at least 1−δ, we know that for all a ∈ [−B,B], |R̂n(a)−R(a)| ≤ z′(n)

where z′(n) =

√
4B2

nc2
(3 log n+ log

c1
δ

)

By definition of â and a∗, we can conclude that with probability at least 1− δ:

R(â)−R(a∗) = R(â)− R̂n(â) + R̂n(â)− R̂n(a∗) + R̂n(a∗)−R(a∗)

≤ |R(â)− R̂n(â)|+ |R̂n(a∗)−R(a∗)|
≤ 2z′(n)

where we used the fact that â is the empirical risk minimizer and hence R̂n(â) ≤ R̂n(a∗).

Set z(n) = 2z′(n) and we get the desired bound.
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Problem 2: Let P1 and P2 be two distributions with densities p1 and p2. Recall that
TV(P1, P2) = supA |P1(A)− P2(A)|.
(a) Show that ∫

p1 ∧ p2 = 1− TV(P1, P2)

where p1(x) ∧ p2(x) = min{p1(x), p2(x)}.
Ans.

Note that for any A ⊂ R, P1(A)− P2(A) = (1− P1(A
c))− (1− P2(A

c)) = P2(A
c)− P1(A

c).
Hence, supA P1(A)− P2(A) = supA P2(A)− P1(A) = supA |P1(A)− P2(A)|.

Now, supA P1(A)− P2(A) = supA
∫
x∈A p1(x)− p2(x)dx and it is clear that A = {x : p1(x) >

p2(x)}.

1− TV (P1, P2) =

∫
A

p1(x)dx+

∫
Ac

p1(x)dx−
(∫

A

p1(x)− p2(x)dx

)
=

∫
Ac

p1(x)dx+

∫
A

p2(x)dx

=

∫
p1 ∧ p2dx

Where the last equality follow from the observation that A = {x : p1(x) > p2(x)} and that
A ∪Ac = R. We performed our analysis assuming support is R but it can generalize to any
measure space.
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(b) Let P be a set of distributions. Let P1 and P2 be two arbitrary distributions in P . Let

X ∼ P for some P ∈ P . Let θ : P → R and let θ̂ = θ̂(X) denote an estimator of θ(P ).
Show that

inf
θ̂

sup
P∈P

EP |θ̂ − θ(P )| ≥ |θ(P1)− θ(P2)|
4

(1− TV(P1, P2)) .

Ans. We first finitize and discretize:

inf
θ̂

sup
P∈P

EP |θ̂(X)− θ(P )| ≥ inf
θ̂

max
P∈{P1,P2}

EP |θ̂(X)− θ(P )|

≥ inf
Z

max
Pi∈{P1,P2}

Pi(Z(X) 6= i)
|θ(P1)− θ(P2)|

2

≥ inf
Z

[P1(Z(X) 6= 1) + P2(Z(X) 6= 2)]
|θ(P1)− θ(P2)|

4

where Z is a binary function of the data.

By Neyman-Pearson lemma, the estimator Z∗ that minimizes P1(Z(X) 6= 1)+P2(Z(X) 6= 2)
is Z∗(X) = 1 if p1(X) > p2(X) and Z∗(X) = 2 if p2(X) > p1(X).

Hence, P1(Z
∗(X) 6= 1) =

∫
x:p1(x)<p2(x)

p1(x)dx and P2(Z
∗(X) 6= 2) ≥

∫
x:p2(x)<p1(x)

p2(x)dx.

Combining these two results, we have that P1(Z
∗(X) 6= 1) + P2(Z

∗(X) 6= 2) =

∫
p1 ∧ p2dx

Thus, inf
Z

[P1(Z(X) 6= 1) + P2(Z(X) 6= 2)] ≥
∫
p1 ∧ p2dx and we get the desired bound.
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Problem 3. In class, we saw that a kernel density estimate can achieve a mean square error
(MSE) rate of n−2/(2+d) for Lipschitz densities. The same rate is true for a histogram density
estimate as well. Moreover if the density has compact support, the same is true for mean
integrated square error (MISE) E[

∫
|p̂(x)− p(x)|2dx] which is a global measure of accuracy.

In this problem, you will derive the rate of MISE convergence for densities that are piecewise-
smooth, i.e. they are Lipschitz everywhere, except for a few points where the densities can
have a discontinuity.

Consider univariate (d = 1) densities supported on the unit interval [0, 1] that satisfy |p(x)−
p(x′)| ≤ L|x − x′| for all x ∈ [0, 1], except for N (a finite number of) points where it may
jump. You may assume that the density is bounded from above, i.e. p(x) ≤ B < ∞.
Consider a histogram density estimator based on n samples {Xi}ni=1 drawn i.i.d. from the
density as follows:

p̂(x) =
m∑
j=1

p̂jI(x ∈ Bj) where p̂j =
m

n

n∑
i=1

I(Xi ∈ Bj)

and B1 = [0, 1/m), B2 = [1/m, 2/m), . . . , Bm = [(m− 1)/m, 1). Denote its mean by p̄(x) =
E[p̂(x)].

(a) Compute the integrated square bias
∫
|p̄(x)−p(x)|2dx of the histogram density estimator.

Ans. We first look at p̄(x):

p̄(x) = E[p̂(x)] =
m∑
j=1

E[p̂j]I(x ∈ Bj) =
m∑
j=1

mP (Bj)I(x ∈ Bj),

where P (Bj) :=
∫
y∈Bj

p(y)dy. Then, we have the integrated squared bias∫
|p̄(x)− p(x)|2dx =

∫ ∣∣∣∣∣
m∑
j=1

mP (Bj)I(x ∈ Bj)− p(x)

∣∣∣∣∣
2

dx =
m∑
j=1

∫
x∈Bj

|mP (Bj)− p(x)|2 dx.

For each Bj, let us consider two cases.

(1) Bj contains none of the N discontinuities. Using the Lipschitz property, we get∫
x∈Bj

|mP (Bj)− p(x)|2 dx =

∫
x∈Bj

∣∣∣∣∣m
∫
y∈Bj

(p(y)− p(x))dy

∣∣∣∣∣
2

dx

≤
∫
x∈Bj

(
m

∫
y∈Bj

|p(y)− p(x)|dy

)2

dx

≤
∫
x∈Bj

(
m

∫
y∈Bj

L

m
dy

)2

dx

≤
∫
x∈Bj

L2

m2
dx =

L2

m3
.
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(2) Bj contains at least one of the N discontinuities. Using the assumption that p(x) ≤
B <∞, we get∫

x∈Bj

|mP (Bj)− p(x)|2 dx =

∫
x∈Bj

∣∣∣∣∣m
∫
y∈Bj

(p(y)− p(x))dy

∣∣∣∣∣
2

dx

≤
∫
x∈Bj

(
m

∫
y∈Bj

|p(y)− p(x)|dy

)2

dx

≤
∫
x∈Bj

(
m

∫
y∈Bj

Bdy

)2

dx

≤
∫
x∈Bj

B2dx =
B2

m
.

Since N is finite, we have that∫
|p̄(x)− p(x)|2dx ≤ cNB2

m

for some constant c and large m.

(b) Compute the integrated variance
∫
E[|p̂(x)− p̄(x)|2]dx.

Ans. ∫
E[|p̂(x)− p̄(x)|2]dx =

∫
E

∣∣∣∣∣
m∑
j=1

(p̂j −mP (Bj))I(x ∈ Bj)

∣∣∣∣∣
2
 dx

=
m∑
j=1

E[|p̂j −mP (Bj)|2]
m

=
m∑
j=1

mE

[∣∣∣∣ p̂jm − P (Bj)

∣∣∣∣2
]

=
m∑
j=1

mV
[∑n

i=1 I(Xi ∈ Bj)

n

]

=
m∑
j=1

m

n
P (X ∈ Bj)(1− P (X ∈ Bj))

≤
m∑
j=1

m

n
P (X ∈ Bj) =

m

n
.

(c) Derive the rate of mean integrated square error (MISE) convergence.
Ans. The MISE is the integrated squared bias plus the integrated variance. To get the
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optimal m, we let
m

n
=

cNB2

m
⇐⇒ m = B

√
cN
√
n,

leading to MISE ∈ O(n−1/2).

(d) How does this rate compare to the MISE rate for estimating a Lipschitz smooth density?
Comment.
Ans. The MISE rate for estimating a Lipschitz smooth density, when d = 1, is n−2/3,
which is faster than our rate n−1/2 here. The reason is that discontinuous points increase
the bias in the estimate from O(1/m2), which is the case for smooth densities, to O(1/m).
The variances in both cases are the same.
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Problem 4. Let x> = [x>A x>B] be a random vector following a zero-mean Gaussian distri-
bution with precision (inverse covariance)

Ω =

[
ΩAA ΩAB

ΩBA ΩBB

]
,

where A and B form a partition of the variables.

(a) Write the conditional density p(xA|xB) in terms of ΩAA, ΩAB, ΩBA, ΩBB.
Ans.

log p(xA,xB)

∝ −1

2
[x>A x>B]

[
ΩAA ΩAB

ΩBA ΩBB

] [
xA
xB

]
= −1

2
(x>AΩAAxA + 2x>BΩBAxA + x>BΩBBxB)

= −1

2

(
(xA + Ω−1AAΩABxB)>ΩAA(xA + Ω−1AAΩABxB) + x>B

(
ΩBB − ΩBA

(
ΩAA)−1ΩAB

)
xB

)
.

This suggests that the marginal distribution p(xB), obtained by integrating p(xA,xB)
over xA, is a zero mean Gaussian with inverse covariance

ΩBB − ΩBA

(
ΩAA)−1ΩAB,

which then gives that

p(xA|xB) =
p(xA,xB)

p(xB)
= N (−Ω−1AAΩABxB,Ω

−1
AA).

(b) Show that the precision matrix of xA given xB does NOT depend on the value of xB.
Ans. From (a) we know the precision matrix of xA given xB is ΩAA, which does not
depend on the value of xB.

(c) Write the marginal density p(xA) in terms of ΩAA, ΩAB, ΩBA, ΩBB.
Ans. Switching xA and xB in the derivation in (a), we get that

p(xA) = N (0, (ΩAA − ΩAB

(
ΩBB)−1ΩBA)−1).

(d) Assume the variables in xA are mutually independent of one another conditioning on
xB. Would the variables in xA be mutually independent? Why or why not?
Ans. The variables in xA are mutually independent of one another conditioning on xB
if and only if the precision matrix of the condition distribution, which has been shown
in (a) to be ΩAA, is diagonal. The variables in xA are mutually independent if and only
if the precision matrix of the marginal, ΩAA−ΩAB

(
ΩBB)−1ΩBA, is diagonal. Obviously,

ΩAA being diagonal does not guarantee ΩAA − ΩAB

(
ΩBB)−1ΩBA to be diagonal, so the

answer is no.
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Problem 5. Let Y ∈ Rn and X ∈ Rp×n. The Lasso problem is to solve, for a given
regularization parameter λ,

Φ(λ) = min
β∈Rp

1

2n
||Y −Xβ||22 + λ||β||1.

In this problem, we show that one can equivalently solve

Ψ(t) = min
β∈Rp: ||β||1≤t

1

2n
||Y −Xβ||22.

(a) Show that both optimizations are convex. Ans.

We know that h(x) = ||x||22 is convex since gradient of f at x0 is 2x0 and the Hessian of f
at x0 is 2Id.

Since composition of a convex function with an affine function is convex, we know that
f(β) = ||Y −Xβ||22 is convex for all Y,X.

Finally, since || · ||1 is a norm, it is convex and thus, Φ(λ) contains a convex optimization.
Likewise, the constraint in Ψ(t) is convex and thus the second optimization is convex as well.
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(b) Prove that for a fixed t0, there exist a unique λ0 such that if β̂ minimizes 1
2n
||Y −Xβ||22

for ||β||1 ≤ t0 then β̂ also minimizes 1
2n
||Y −Xβ||22 + λ0||β||1. Show that

λ0 = argsupλ≥0Φ(λ)− λt0.

(Hint: Use strong duality.)

Ans. We first take the constrained form and write down the Lagrangian:

 L(β, λ) =
1

2n
||Y −Xβ||22 + λ(||β||1 − t0)

=
1

2n
||Y −Xβ||22 + λ||β||1 − λt0

Since both optimizations are convex, by strong duality we have

Ψ(t0) = min
β

sup
λ
L(β, λ) = sup

λ
min
β
L(β, λ) = sup

λ
Φ(λ)− λt0

Let (β∗, λ0) be a pair of primal-dual optimal solution. Then by KKT conditions, it must
be that subgradient of L(β, λ0) at β∗ contains 0 and hence β∗ is the global optimum of the
optimization in Φ(λ0).

Since λ0 is the dual optimum, it must be that λ0 optimizes supλ Φ(λ)− λt0.

By strong duality, we know that λ0 is global dual optimum, and by the fact that Φ(λ)− λt0
is strongly convex in λ, we know that λ0 is unique.
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(c) Is it true that Ψ(t0) = Φ(λ0)? Explain.

Ans. Φ(λ0) = Ψ(t0) + λ0t0 and hence the two are not equal.
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(Extra Blank Paper.)

16


