10-702/36-702Midterm Exam Solutions

March 2 2011

There are five questions. You only need to do three. Circle the three questions you want to be graded:

1 2 3 4 5

Name: _____

Problem 1: Let X_1, \ldots, X_n be a random sample where $-B \leq X_i \leq B$ for some finite B > 0. For every real number a define

$$R(a) = \mathbb{E}|X - a|, \qquad \widehat{R}_n(a) = \frac{1}{n} \sum_{i=1}^n |X_i - a|.$$

Let a_* minimize R(a) and let \widehat{a} minimize $\widehat{R}_n(a)$. That is,

$$a_* = \underset{-B \le a \le B}{\operatorname{argmin}} R(a), \quad \widehat{a} = \underset{-B \le a \le B}{\operatorname{argmin}} \widehat{R}_n(a).$$

In this question you will show that, with high probability, $R(\widehat{a}) \leq R(a_*) + O(\sqrt{\log n/n})$ with high probability.

(a) Let P_n be the empirical distribution. Thus $P_n(A) = (\text{number of } X_i \in A)/n$. Show that

$$\sup_{-B \le a \le B} |R(a) - \widehat{R}_n(a)| \le 2B \sup_{A \in \mathcal{A}} |P_n(A) - P(A)|$$

where

$$\mathcal{A} = \left\{ \{x: \ g_a(x) > t\}: \ a \in [-B, B], \ t > 0 \right\}$$

and $g_a(x) = |x - a|$.

Hint: Note that

$$R(a) = \mathbb{E}(g_a(X)) = \int_0^{2B} \mathbb{P}(g_a(X) > t) dt$$

and

$$\widehat{R}_n(a) = \int_0^{2B} P_n(g_a(X) > t) dt = \int_0^{2B} \frac{1}{n} \sum_{i=1}^n I_{g_a(X_i) > t} dt.$$

(There is workspace on the next page.)

Workspace for part (a).

Ans.

Using the hint, we know that

$$|R(a) - \widehat{R}_n(a)| = |\int_0^{2B} P(g_a(X) > t) - P_n(g_a(X) > t) dt|$$

$$\leq \int_0^{2B} |P(g_a(X) > t) - P_n(g_a(X) > t)| dt$$

$$\leq \int_0^{2B} \sup_{t \geq 0} |P(g_a(X) > t) - P_n(g_a(X) > t)| dt$$

$$= 2B \sup_{t \geq 0} |P(g_a(X) > t) - P_n(g_a(X) > t)|$$

Since this inequality is true for all a, we get that

$$\sup_{-B \le a \le B} |R(a) - \widehat{R}_n(a)| \le 2B \sup_{-B \le a \le B} \sup_{t \ge 0} |P_n(g_a(X) > t) - P(g_a(X) > t)|$$

$$\le 2B \sup_{A \in \mathcal{A}} |P_n(A) - P(A)|$$

(b) Compute the VC dimension of \mathcal{A} . Ans. \mathcal{A} is defined as $\{\{x: |x-a| > t\}: a \in [-B,B], t>0\}$. This is the set of all two-sided intervals with gap in the center.

Figure 1: Example of an element of the set A

It is clear that such family of intervals can shatter any set of 2 numbers in [-B, B]. Let $x_1 < x_2 < x_3 \in [-B, B]$; it is also easy to see that $\{x_2\}$ cannot be picked out by any elements of A.

Hence, VC-dimension of \mathcal{A} is 2.

(c) Recall that if \mathcal{A} has VC dimension d then

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A) - P(A)| > \epsilon\right) \le c_1 n^d e^{-c_2 n\epsilon^2}$$

for some c_1 and c_2 . Use this fact, together with the results from (a) and (b) to show that $\sup_a |\widehat{R}_n(a) - R(a)| < \epsilon$ with high probability.

NOTE: there was a typo in the bound, it should be n^d instead of d^n as stated in the exam. We will accept both as correct but only work with n^d in the solutions.

Ans.

$$P(\sup_{A \in \mathcal{A}} |\widehat{R}_n(a) - R(a)| > \epsilon) \le P(2B \sup_{A \in \mathcal{A}} |P_n(A) - P(A)| > \epsilon)$$

$$= P(\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| > \frac{\epsilon}{2B})$$

$$\le c_1 n^3 \exp(-c_2 n \frac{\epsilon^2}{4B^2})$$

Where we used that the VC dimension d = 3.

(d) Find z(n) such that

$$R(\widehat{a}) \leq R(a_*) + z(n)$$

with probability at least $1 - \delta$.

Ans. We set $\delta = c_1 n^3 \exp(-c_2 n \frac{\epsilon^2}{4B^2})$ and work through a little algebra to find that $\epsilon = \sqrt{\frac{4B^2}{nc_2}(3\log n + \log \frac{c_1}{\delta})}$.

Hence, with probability at least $1-\delta$, we know that for all $a \in [-B, B]$, $|\widehat{R}_n(a) - R(a)| \le z'(n)$ where $z'(n) = \sqrt{\frac{4B^2}{nc_2}(3\log n + \log\frac{c_1}{\delta})}$

By definition of \hat{a} and a_* , we can conclude that with probability at least $1 - \delta$:

$$R(\widehat{a}) - R(a_*) = R(\widehat{a}) - \widehat{R}_n(\widehat{a}) + \widehat{R}_n(\widehat{a}) - \widehat{R}_n(a_*) + \widehat{R}_n(a_*) - R(a_*)$$

$$\leq |R(\widehat{a}) - \widehat{R}_n(\widehat{a})| + |\widehat{R}_n(a_*) - R(a_*)|$$

$$\leq 2z'(n)$$

where we used the fact that \hat{a} is the empirical risk minimizer and hence $\hat{R}_n(\hat{a}) \leq \hat{R}_n(a_*)$.

Set z(n) = 2z'(n) and we get the desired bound.

Problem 2: Let P_1 and P_2 be two distributions with densities p_1 and p_2 . Recall that $\mathsf{TV}(P_1, P_2) = \sup_A |P_1(A) - P_2(A)|$.

(a) Show that

$$\int p_1 \wedge p_2 = 1 - \mathsf{TV}(P_1, P_2)$$

where $p_1(x) \wedge p_2(x) = \min\{p_1(x), p_2(x)\}.$

Ans.

Note that for any $A \subset \mathbb{R}$, $P_1(A) - P_2(A) = (1 - P_1(A^c)) - (1 - P_2(A^c)) = P_2(A^c) - P_1(A^c)$. Hence, $\sup_A P_1(A) - P_2(A) = \sup_A P_2(A) - P_1(A) = \sup_A |P_1(A) - P_2(A)|$.

Now, $\sup_A P_1(A) - P_2(A) = \sup_A \int_{x \in A} p_1(x) - p_2(x) dx$ and it is clear that $A = \{x : p_1(x) > p_2(x)\}.$

$$1 - TV(P_1, P_2) = \int_A p_1(x)dx + \int_{A^c} p_1(x)dx - \left(\int_A p_1(x) - p_2(x)dx\right)$$
$$= \int_{A^c} p_1(x)dx + \int_A p_2(x)dx$$
$$= \int p_1 \wedge p_2 dx$$

Where the last equality follow from the observation that $A = \{x : p_1(x) > p_2(x)\}$ and that $A \cup A^c = \mathbb{R}$. We performed our analysis assuming support is \mathbb{R} but it can generalize to any measure space.

(b) Let \mathcal{P} be a set of distributions. Let P_1 and P_2 be two arbitrary distributions in \mathcal{P} . Let $X \sim P$ for some $P \in \mathcal{P}$. Let $\theta : \mathcal{P} \to \mathbb{R}$ and let $\widehat{\theta} = \widehat{\theta}(X)$ denote an estimator of $\theta(P)$. Show that

$$\inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P |\widehat{\theta} - \theta(P)| \ge \frac{|\theta(P_1) - \theta(P_2)|}{4} (1 - \mathsf{TV}(P_1, P_2)).$$

Ans. We first finitize and discretize:

$$\begin{split} \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} |\widehat{\theta}(X) - \theta(P)| &\geq \inf_{\widehat{\theta}} \max_{P \in \{P_{1}, P_{2}\}} \mathbb{E}_{P} |\widehat{\theta}(X) - \theta(P)| \\ &\geq \inf_{Z} \max_{P_{i} \in \{P_{1}, P_{2}\}} P_{i}(Z(X) \neq i) \frac{|\theta(P_{1}) - \theta(P_{2})|}{2} \\ &\geq \inf_{Z} [P_{1}(Z(X) \neq 1) + P_{2}(Z(X) \neq 2)] \frac{|\theta(P_{1}) - \theta(P_{2})|}{4} \end{split}$$

where Z is a binary function of the data.

By Neyman-Pearson lemma, the estimator Z^* that minimizes $P_1(Z(X) \neq 1) + P_2(Z(X) \neq 2)$ is $Z^*(X) = 1$ if $p_1(X) > p_2(X)$ and $Z^*(X) = 2$ if $p_2(X) > p_1(X)$.

Hence,
$$P_1(Z^*(X) \neq 1) = \int_{x:p_1(x) < p_2(x)} p_1(x) dx$$
 and $P_2(Z^*(X) \neq 2) \geq \int_{x:p_2(x) < p_1(x)} p_2(x) dx$.
Combining these two results, we have that $P_1(Z^*(X) \neq 1) + P_2(Z^*(X) \neq 2) = \int p_1 \wedge p_2 dx$

Thus, $\inf_{Z}[P_1(Z(X) \neq 1) + P_2(Z(X) \neq 2)] \geq \int p_1 \wedge p_2 dx$ and we get the desired bound.

Problem 3. In class, we saw that a kernel density estimate can achieve a mean square error (MSE) rate of $n^{-2/(2+d)}$ for Lipschitz densities. The same rate is true for a histogram density estimate as well. Moreover if the density has compact support, the same is true for mean integrated square error (MISE) $\mathbb{E}[\int |\widehat{p}(x) - p(x)|^2 dx]$ which is a global measure of accuracy.

In this problem, you will derive the rate of MISE convergence for densities that are piecewisesmooth, i.e. they are Lipschitz everywhere, except for a few points where the densities can have a discontinuity.

Consider univariate (d=1) densities supported on the unit interval [0,1] that satisfy $|p(x)-p(x')| \leq L|x-x'|$ for all $x \in [0,1]$, except for N (a finite number of) points where it may jump. You may assume that the density is bounded from above, i.e. $p(x) \leq B < \infty$. Consider a histogram density estimator based on n samples $\{X_i\}_{i=1}^n$ drawn i.i.d. from the density as follows:

$$\widehat{p}(x) = \sum_{j=1}^{m} \widehat{p}_{j} I(x \in B_{j}) \text{ where } \widehat{p}_{j} = \frac{m}{n} \sum_{i=1}^{n} I(X_{i} \in B_{j})$$

and $B_1 = [0, 1/m), B_2 = [1/m, 2/m), \dots, B_m = [(m-1)/m, 1)$. Denote its mean by $\bar{p}(x) = \mathbb{E}[\hat{p}(x)]$.

(a) Compute the integrated square bias $\int |\bar{p}(x)-p(x)|^2 dx$ of the histogram density estimator. **Ans.** We first look at $\bar{p}(x)$:

$$\bar{p}(x) = \mathbb{E}[\hat{p}(x)] = \sum_{j=1}^{m} \mathbb{E}[\hat{p}_j] I(x \in B_j) = \sum_{j=1}^{m} m P(B_j) I(x \in B_j),$$

where $P(B_j) := \int_{y \in B_j} p(y) dy$. Then, we have the integrated squared bias

$$\int |\bar{p}(x) - p(x)|^2 dx = \int \left| \sum_{j=1}^m mP(B_j) I(x \in B_j) - p(x) \right|^2 dx = \sum_{j=1}^m \int_{x \in B_j} |mP(B_j) - p(x)|^2 dx.$$

For each B_j , let us consider two cases.

(1) B_j contains none of the N discontinuities. Using the Lipschitz property, we get

$$\int_{x \in B_j} |mP(B_j) - p(x)|^2 dx = \int_{x \in B_j} \left| m \int_{y \in B_j} (p(y) - p(x)) dy \right|^2 dx$$

$$\leq \int_{x \in B_j} \left(m \int_{y \in B_j} |p(y) - p(x)| dy \right)^2 dx$$

$$\leq \int_{x \in B_j} \left(m \int_{y \in B_j} \frac{L}{m} dy \right)^2 dx$$

$$\leq \int_{x \in B_j} \frac{L^2}{m^2} dx = \frac{L^2}{m^3}.$$

(2) B_j contains at least one of the N discontinuities. Using the assumption that $p(x) \le B < \infty$, we get

$$\int_{x \in B_j} |mP(B_j) - p(x)|^2 dx = \int_{x \in B_j} \left| m \int_{y \in B_j} (p(y) - p(x)) dy \right|^2 dx$$

$$\leq \int_{x \in B_j} \left(m \int_{y \in B_j} |p(y) - p(x)| dy \right)^2 dx$$

$$\leq \int_{x \in B_j} \left(m \int_{y \in B_j} B dy \right)^2 dx$$

$$\leq \int_{x \in B_j} B^2 dx = \frac{B^2}{m}.$$

Since N is finite, we have that

$$\int |\bar{p}(x) - p(x)|^2 dx \le \frac{cNB^2}{m}$$

for some constant c and large m.

(b) Compute the integrated variance $\int \mathbb{E}[|\widehat{p}(x) - \bar{p}(x)|^2]dx$. Ans.

$$\int \mathbb{E}[|\widehat{p}(x) - \overline{p}(x)|^{2}] dx = \int \mathbb{E}\left[\left|\sum_{j=1}^{m} (\widehat{p}_{j} - mP(B_{j}))I(x \in B_{j})\right|^{2}\right] dx$$

$$= \sum_{j=1}^{m} \frac{\mathbb{E}[|\widehat{p}_{j} - mP(B_{j})|^{2}]}{m}$$

$$= \sum_{j=1}^{m} m\mathbb{E}\left[\left|\frac{\widehat{p}_{j}}{m} - P(B_{j})\right|^{2}\right]$$

$$= \sum_{j=1}^{m} m\mathbb{V}\left[\frac{\sum_{i=1}^{n} I(X_{i} \in B_{j})}{n}\right]$$

$$= \sum_{j=1}^{m} \frac{m}{n}P(X \in B_{j})(1 - P(X \in B_{j}))$$

$$\leq \sum_{i=1}^{m} \frac{m}{n}P(X \in B_{j}) = \frac{m}{n}.$$

(c) Derive the rate of mean integrated square error (MISE) convergence.

Ans. The MISE is the integrated squared bias plus the integrated variance. To get the

optimal m, we let

$$\frac{m}{n} = \frac{cNB^2}{m} \iff m = B\sqrt{cN}\sqrt{n},$$

leading to MISE $\in O(n^{-1/2})$.

(d) How does this rate compare to the MISE rate for estimating a Lipschitz smooth density? Comment.

Ans. The MISE rate for estimating a Lipschitz smooth density, when d=1, is $n^{-2/3}$, which is faster than our rate $n^{-1/2}$ here. The reason is that discontinuous points increase the bias in the estimate from $O(1/m^2)$, which is the case for smooth densities, to O(1/m). The variances in both cases are the same.

Problem 4. Let $\mathbf{x}^{\top} = [\mathbf{x}_A^{\top} \mathbf{x}_B^{\top}]$ be a random vector following a zero-mean Gaussian distribution with precision (inverse covariance)

$$\Omega = \begin{bmatrix} \Omega_{AA} & \Omega_{AB} \\ \Omega_{BA} & \Omega_{BB} \end{bmatrix},$$

where A and B form a partition of the variables.

(a) Write the conditional density $p(\mathbf{x}_A|\mathbf{x}_B)$ in terms of Ω_{AA} , Ω_{AB} , Ω_{BA} , Ω_{BB} . Ans.

$$\log p(\mathbf{x}_{A}, \mathbf{x}_{B})$$

$$\propto -\frac{1}{2} [\mathbf{x}_{A}^{\top} \mathbf{x}_{B}^{\top}] \begin{bmatrix} \Omega_{AA} & \Omega_{AB} \\ \Omega_{BA} & \Omega_{BB} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{A} \\ \mathbf{x}_{B} \end{bmatrix}$$

$$= -\frac{1}{2} (\mathbf{x}_{A}^{\top} \Omega_{AA} \mathbf{x}_{A} + 2 \mathbf{x}_{B}^{\top} \Omega_{BA} \mathbf{x}_{A} + \mathbf{x}_{B}^{\top} \Omega_{BB} \mathbf{x}_{B})$$

$$= -\frac{1}{2} ((\mathbf{x}_{A} + \Omega_{AA}^{-1} \Omega_{AB} \mathbf{x}_{B})^{\top} \Omega_{AA} (\mathbf{x}_{A} + \Omega_{AA}^{-1} \Omega_{AB} \mathbf{x}_{B}) + \mathbf{x}_{B}^{\top} (\Omega_{BB} - \Omega_{BA} (\Omega_{AA})^{-1} \Omega_{AB}) \mathbf{x}_{B}).$$

This suggests that the marginal distribution $p(\mathbf{x}_B)$, obtained by integrating $p(\mathbf{x}_A, \mathbf{x}_B)$ over \mathbf{x}_A , is a zero mean Gaussian with inverse covariance

$$\Omega_{BB} - \Omega_{BA} (\Omega_{AA})^{-1} \Omega_{AB},$$

which then gives that

$$p(\mathbf{x}_A|\mathbf{x}_B) = \frac{p(\mathbf{x}_A, \mathbf{x}_B)}{p(\mathbf{x}_B)} = \mathcal{N}(-\Omega_{AA}^{-1}\Omega_{AB}\mathbf{x}_B, \Omega_{AA}^{-1}).$$

- (b) Show that the precision matrix of \mathbf{x}_A given \mathbf{x}_B does NOT depend on the value of \mathbf{x}_B . **Ans.** From (a) we know the precision matrix of \mathbf{x}_A given \mathbf{x}_B is Ω_{AA} , which does not depend on the value of \mathbf{x}_B .
- (c) Write the marginal density $p(\mathbf{x}_A)$ in terms of Ω_{AA} , Ω_{AB} , Ω_{BA} , Ω_{BB} . Ans. Switching \mathbf{x}_A and \mathbf{x}_B in the derivation in (a), we get that

$$p(\mathbf{x}_A) = \mathcal{N}(\mathbf{0}, (\Omega_{AA} - \Omega_{AB}(\Omega_{BB})^{-1}\Omega_{BA})^{-1}).$$

(d) Assume the variables in \mathbf{x}_A are mutually independent of one another conditioning on \mathbf{x}_B . Would the variables in \mathbf{x}_A be mutually independent? Why or why not? **Ans.** The variables in \mathbf{x}_A are mutually independent of one another conditioning on \mathbf{x}_B if and only if the precision matrix of the condition distribution, which has been shown in (a) to be Ω_{AA} , is diagonal. The variables in \mathbf{x}_A are mutually independent if and only if the precision matrix of the marginal, $\Omega_{AA} - \Omega_{AB}(\Omega_{BB})^{-1}\Omega_{BA}$, is diagonal. Obviously, Ω_{AA} being diagonal does not guarantee $\Omega_{AA} - \Omega_{AB}(\Omega_{BB})^{-1}\Omega_{BA}$ to be diagonal, so the answer is no.

Problem 5. Let $Y \in \mathbb{R}^n$ and $X \in \mathbb{R}^{p \times n}$. The Lasso problem is to solve, for a given regularization parameter λ ,

$$\Phi(\lambda) = \min_{\beta \in \mathbb{R}^p} \frac{1}{2n} ||Y - X\beta||_2^2 + \lambda ||\beta||_1.$$

In this problem, we show that one can equivalently solve

$$\Psi(t) = \min_{\beta \in \mathbb{R}^{p}: \ ||\beta||_{1} \le t} \frac{1}{2n} ||Y - X\beta||_{2}^{2}.$$

(a) Show that both optimizations are convex. **Ans.**

We know that $h(x) = ||x||_2^2$ is convex since gradient of f at x_0 is $2x_0$ and the Hessian of f at x_0 is 2Id.

Since composition of a convex function with an affine function is convex, we know that $f(\beta) = ||Y - X\beta||_2^2$ is convex for all Y, X.

Finally, since $||\cdot||_1$ is a norm, it is convex and thus, $\Phi(\lambda)$ contains a convex optimization. Likewise, the constraint in $\Psi(t)$ is convex and thus the second optimization is convex as well.

(b) Prove that for a fixed t_0 , there exist a unique λ_0 such that if $\widehat{\beta}$ minimizes $\frac{1}{2n}||Y - X\beta||_2^2$ for $||\beta||_1 \le t_0$ then $\widehat{\beta}$ also minimizes $\frac{1}{2n}||Y - X\beta||_2^2 + \lambda_0||\beta||_1$. Show that

$$\lambda_0 = \operatorname{argsup}_{\lambda > 0} \Phi(\lambda) - \lambda t_0.$$

(Hint: Use strong duality.)

Ans. We first take the constrained form and write down the Lagrangian:

$$L(\beta, \lambda) = \frac{1}{2n} ||Y - X\beta||_2^2 + \lambda(||\beta||_1 - t_0)$$
$$= \frac{1}{2n} ||Y - X\beta||_2^2 + \lambda||\beta||_1 - \lambda t_0$$

Since both optimizations are convex, by strong duality we have

$$\Psi(t_0) = \min_{\beta} \sup_{\lambda} L(\beta, \lambda) = \sup_{\lambda} \min_{\beta} L(\beta, \lambda) = \sup_{\lambda} \Phi(\lambda) - \lambda t_0$$

Let (β^*, λ_0) be a pair of primal-dual optimal solution. Then by KKT conditions, it must be that subgradient of $L(\beta, \lambda_0)$ at β^* contains 0 and hence β^* is the global optimum of the optimization in $\Phi(\lambda_0)$.

Since λ_0 is the dual optimum, it must be that λ_0 optimizes $\sup_{\lambda} \Phi(\lambda) - \lambda t_0$.

By strong duality, we know that λ_0 is global dual optimum, and by the fact that $\Phi(\lambda) - \lambda t_0$ is strongly convex in λ , we know that λ_0 is unique.

(c) Is it true that $\Psi(t_0) = \Phi(\lambda_0)$? Explain.

Ans. $\Phi(\lambda_0) = \Psi(t_0) + \lambda_0 t_0$ and hence the two are not equal.

(Extra Blank Paper.)