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1 Geometry Fundamentals

We can describe a hyperplane in R¢ as a normal vector h € R? and an offset -y € R?.
e If z is on the plane, then ' (z — z) = 0
e If  is on one side of the plane, then h" (z — x¢) > 0
e If z is on the other side, then AT (z — zg) < 0
e we can multiply h by non-zero scalar and still describe the same plane

e Since h'z = h'xg for all x on the plane, we can change our offset to be another point x, on the plane
and still describe the same plane

Theorem 1. (Supporting Hyperplane Theorem)
Let X C R? be a convex set. Let xy € boundary(X), then there exist a hyperplane H = {x € R? :
hT(z — o) = 0} with normal vector h € R? and offset x9 € X such that h™ (z — z0) > 0 forall x € X.

Intuitively, this means that the supporting hyperplane touches the convex set but never crosses it; the entire
convex set is on the same side of the hyperplane.

Remark 1. Let f : R™ — RU{oo} be a convex function, then the epigraph of f is the set of n + 1-dimensional
points {(x,2) : € R™, z € R,z > f(x)}. The epigraph is a convex set. The boundary of the epigraph is the
set of n + 1-dimensional points {(z, f(z))}; this is graph of f.

2 Geometry of Subgradient

Definition 2. Let f : R™ — R U {oo} be a convex function.

Letw € R™, we say w € f (x¢) if forall z € R", f(z) > w'(z — z0) + f(z0)

Geometrically, the subgradient of f at z( forms a supporting hyperplane of the epigraph of f at zy. We can
see this with a little algebra:

f(z) <w'(z —z0) + f(x0) 2.1
w'zy — flzg) <w'z — f(z) (2.2)
(w, =1)(xo, f(20)) < (w,—1)"(, f(x)) (2.3)



Since (w, —1)T (2o, f(z0)) < (w, —1)T(x, f(z)) for all x, the n + 1-dimensional plane specified by normal
vector (w, —1) and offset (xg, f(x)) is a supporting hyperplane for the epigraph.

Similarly, any supporting hyperplane of epigraph at offset (xq, f(2¢)) with normal vector (w, —1) (possibly
need scaling) specifies a subgradient of f at xy. By the supporting hyperplane theorem, 9 f () is non-empty
for all g such that f(xg) # oo.

Theorem 3. A convex function f is minimized at x if and only if 0 € O f ().

A direct proof is easy, but we can also intuitively confirm this theorem by considering subgradient as sup-
porting hyperplane.
Remark 2. (A Quick Digression into Infinity)
Let f be a convex function. If f(z9) = —oo and f(x1) is finite, then f(tzo 4+ (1 — t)x1) < tf(zo) + (1 —
t)f(x1) < —oo and so f can only be finite on a scattered set of points. Thus, we generally assume convex
functions are proper, i.e., cannot be —oo anywhere and cannot be co everywhere.

In contrast, a lot of important convex functions will map points to co; we must take special care however
when f is infinity. For example, if f(2) = oo and f is finite somewhere else, then f does not have a subgradient
at xg.

3 Geometry of Conjugate Dual

Definition 4. Let f : R™ — RU{oc} be a proper convex function. The conjugate dual is a function f* : R" —
R U {o0} defined as

f(y) = sup z'y — f(x)
rER™

Suppose sup, cgn 'y — f(z) is achieved at z¢, then
zoy — f(xo) > 'y — f(x) forall 2 € R" (3.1)
(@) > y" (2 = 20) + f(0) (3.2)

And soy € 0f(xo). We can reverse the reasoning to show that if y € 9f (o), then sup,cgn 'y — f(z) will
be achieved at x.

We can now think about conjugate dual geometrically. Given a plane passing through origin with normal
vector (y, —1), f*(y) is the distance we have to shift this plane up and down until this plane becomes a sup-
porting hyperplane of f. f*(y) is negative if we have to shift the plane up, positive if we shift the plane down.

Remark 3. There are cases where sup,cg» 2"y — f() is not achieved at any zo € R". For example, it might
be that 7y — f(x) increases as x gets farther and farther away and f*(y) = oo. As another less important
example, it might be that the gradient of f levels off as x goes to infinity.

Theorem 5. (Dual at Zero Theorem)
Let f : R™ — R U {oco} be a proper convex function. Then

inf f(z) = —f*(0)

zER™



(0, —1) specifies precisely the hyperplane parallel to the n-dimensional domain of f so the theorem intu-
itively makes sense. The proof is also easy:

Proof.
—f1*(0) = — (sup 0 — f(ac)) (3.3)
z€ER™
= xiean“ f(z) (3.4
O

Taking the conjugate dual of convex functions is a sensitive operation. For instance, (f + g)* # f* + g*.

Theorem 6. Ler f,g : R™ — R U {oo} be closed-proper-convex functions. Then

(f+9)"(y) = inf fr(u) + g% (w)

u,wER™ utw=y

Hand-wavily, we can see that this theorem is natural because O(f + ¢g) = df + dg. So we can form one
subgradient of f + g by taking many different sums of a subgradient of f and a subgradient at g.

Proof. First, we recall that if f is closed-proper-convex, then f** = f. Hence:

(f+9)"(y) = sup aTy — f(z) - g(x) (3.5)
= sup 2Ty — () — 9" (x) (3.6)
rER™
= sup 'y — (sup u'z — f*(u)) - (sup wle — g*(w)) 3.7
rER™ ueR” weR™

In general, we know that — sup, f(x) = inf, — f(z). Hence we can continue:

(f +9)*(y) = sup ="y + ( inf —u'x+ f*(u)) + ( inf wTas+g*(w)> (3.8)
rERN u€R™ weR™
=sup inf z'y—u'z—w'z+ f*(u)+g"(w) (3.9
reR? w,WER™
= sup inf z"(y— (u+w))+ f*(u)+g*(w) (3.10)

rER" w,wER™

Let v’, w’ minimize inf, y,ern 27 (y — (u+w)) + f*(u) + g*(w) (to be fully rigorous, we cannot assume such
u',w' exist). Suppose also that (y — (u' + w’)) # 0. Then sup,cpn 2" (y — (v + w')) + f*(u) + g*(w) is
infinity because as we increase magnitude of x, we can make =" (y — (u/ + w')) arbitrarily large while f*(u)
and g*(w) do not change. Thus, it must be that (y — (u’ + w’) = 0 and we can argue:

sup inf 0+ f*(u) + g* (w) (3.11)
zER™ U,WER™ utw=y

= inf fr(u) + g"(w) (3.12)

u,weER™ : ut+w=y

(f+9)(y)



We can now derive Fenchel Duality Theorem as a corollary:

Corollary 7. (Fenchel Duality Theorem)
Let f,g: R"™ = R U {oo} be closed-proper-convex functions. Then:

inf (f+9)(w) = —(/ +9)°(0) (3.13)
=—(inf f"O)+g"(-N) (3.14)
= sup —f*(A) = f*(=A) (3.15)

AER™

4 Connecting Subgradient and Conjugate Dual

There is an interesting connection between subgradient of the conjugate dual function and the subgradient of
the original function.

Theorem 8. (Dual Subgradient Theorem)
Let f : R™ — R U {oo} be a proper convex function. Let f* be its conjugate dual. Then for all xq,yo € R":

Yo € Of (xo) if and only if xo € Of* (yo)

This theorem says that “gradient” and “position” switches role for the conjugate dual. If f has gradient yq
at position x(, then f* has gradient z( at position yq.

To get an intuition for this theorem, let us consider the case where zq = 0 and let us suppose f(0) = 0
and f has subgradient o at zo = 0. In this case, the Dual Subgradient Theorem says that 0 € df*(yo) which
means that f* achieves its minimum at .

Why is this so? If f(0) = 0, then the origin in the n + 1-dimensional space lies at the boundary of the
epigraph of f. Hence, the hyperplane passing through origin with normal vector (yo, —1) is the the supporting
hyperplane of the epigraph and it touches the epigraph at the origin. If we change yo by a bit, the hyperplane
will “cut” into the epigraph and hence increase the value of f*.

We can see this intuition appear in the proof as well:

Proof. (Dual Subgradient Theorem)
Step 1: We will first prove this for case where 2o = 0 and f(0) = 0. Let yo € f(0), then for all z € R™:

f(@) > yg (z — m0) + f(w0) @.1)
0>ygz — f(x) 4.2)
0> sup ygx — f(z) (4.3)

xER™
0> f*(yo) (4.4)

On the other hand, f*(y) = sup,egn ¥z — f(z) > y 2o — f(z0) > 0. Hence, f* is minimized at yo and
0 € Of*(yo). We can reverse the reasoning to prove the converse.



Step 2: now we prove the theorem for the general case. Suppose yo € 9f(xo). Define function g(x) =
f(z + xo) — f(xo) (note that f(zg) < oo since f has subgradient at ). Then we see that g(0) = 0 and
9g(0) = df(xo). Hence, yo € Of (zo) if and only if yo € Ag(0). By step 1, we know that 0 € dg*(yo) and so

we need to relate dg* to O f*

9" (vo) = sup zTyo — g(x) 4.5)

= wsélﬂgl zTyo — J(x+0) + f(x0) (4.6)

- zseuﬂgl(x +a0) yo — [z +x0) — x5 90 + f(20) 4.7)

= f*(y0) — g0 + f(wo) 4.8)

Hence, dg* (yo) = 0f*(yo) — zo and we see that 0 € Og*(yo) is equivalent to zg € df*(yo). O

We see then that the original function, the conjugate dual, and the subgradient have the following interesting
connection:

e Finding the minimum value of f is equivalent to evaluating f* at 0.
inf f(z) = —£°(0)

e Finding z that achieves minimum value of f is equivalent to finding the subgradient of f* at 0.

0 € 9f(z) if and only if z € 9f*(0)



