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1 Geometry Fundamentals
We can describe a hyperplane in Rd as a normal vector h ∈ Rd and an offset x0 ∈ Rd.

• If x is on the plane, then hT(x− x0) = 0

• If x is on one side of the plane, then hT(x− x0) > 0

• If x is on the other side, then hT(x− x0) < 0

• we can multiply h by non-zero scalar and still describe the same plane

• Since hTx = hTx0 for all x on the plane, we can change our offset to be another point x′0 on the plane
and still describe the same plane

Theorem 1. (Supporting Hyperplane Theorem)
Let X ⊂ Rd be a convex set. Let x0 ∈ boundary(X), then there exist a hyperplane H = {x ∈ Rd :
hT(x− x0) = 0} with normal vector h ∈ Rd and offset x0 ∈ X such that hT(x− x0) ≥ 0 for all x ∈ X .

Intuitively, this means that the supporting hyperplane touches the convex set but never crosses it; the entire
convex set is on the same side of the hyperplane.
Remark 1. Let f : Rn → R∪{∞} be a convex function, then the epigraph of f is the set of n+1-dimensional
points {(x, z) : x ∈ Rn, z ∈ R, z ≥ f(x)}. The epigraph is a convex set. The boundary of the epigraph is the
set of n+ 1-dimensional points {(x, f(x))}; this is graph of f .

2 Geometry of Subgradient
Definition 2. Let f : Rn → R ∪ {∞} be a convex function.

Let w ∈ Rn, we say w ∈ ∂f(x0) if for all x ∈ Rn, f(x) ≥ wT(x− x0) + f(x0)

Geometrically, the subgradient of f at x0 forms a supporting hyperplane of the epigraph of f at x0. We can
see this with a little algebra:

f(x) ≤ wT(x− x0) + f(x0) (2.1)

wTx0 − f(x0) ≤ wTx− f(x) (2.2)

(w,−1)T(x0, f(x0)) ≤ (w,−1)T(x, f(x)) (2.3)
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Since (w,−1)T(x0, f(x0)) ≤ (w,−1)T(x, f(x)) for all x, the n+1-dimensional plane specified by normal
vector (w,−1) and offset (x0, f(x0)) is a supporting hyperplane for the epigraph.

Similarly, any supporting hyperplane of epigraph at offset (x0, f(x0)) with normal vector (w,−1) (possibly
need scaling) specifies a subgradient of f at x0. By the supporting hyperplane theorem, ∂f(x0) is non-empty
for all x0 such that f(x0) 6=∞.

Theorem 3. A convex function f is minimized at x0 if and only if 0̄ ∈ ∂f(x0).

A direct proof is easy, but we can also intuitively confirm this theorem by considering subgradient as sup-
porting hyperplane.

Remark 2. (A Quick Digression into Infinity)
Let f be a convex function. If f(x0) = −∞ and f(x1) is finite, then f(tx0 + (1 − t)x1) ≤ tf(x0) + (1 −
t)f(x1) ≤ −∞ and so f can only be finite on a scattered set of points. Thus, we generally assume convex
functions are proper, i.e., cannot be −∞ anywhere and cannot be∞ everywhere.

In contrast, a lot of important convex functions will map points to ∞; we must take special care however
when f is infinity. For example, if f(x0) =∞ and f is finite somewhere else, then f does not have a subgradient
at x0.

3 Geometry of Conjugate Dual
Definition 4. Let f : Rn → R∪{∞} be a proper convex function. The conjugate dual is a function f∗ : Rn →
R ∪ {∞} defined as

f∗(y) = sup
x∈Rn

xTy − f(x)

Suppose supx∈Rn xTy − f(x) is achieved at x0, then

xT0 y − f(x0) ≥ xTy − f(x) for all x ∈ Rn (3.1)

f(x) ≥ yT(x− x0) + f(x0) (3.2)

And so y ∈ ∂f(x0). We can reverse the reasoning to show that if y ∈ ∂f(x0), then supx∈Rn xTy − f(x) will
be achieved at x0.

We can now think about conjugate dual geometrically. Given a plane passing through origin with normal
vector (y,−1), f∗(y) is the distance we have to shift this plane up and down until this plane becomes a sup-
porting hyperplane of f . f∗(y) is negative if we have to shift the plane up, positive if we shift the plane down.

Remark 3. There are cases where supx∈Rn xTy − f(x) is not achieved at any x0 ∈ Rn. For example, it might
be that xTy − f(x) increases as x gets farther and farther away and f∗(y) = ∞. As another less important
example, it might be that the gradient of f levels off as x goes to infinity.

Theorem 5. (Dual at Zero Theorem)
Let f : Rn → R ∪ {∞} be a proper convex function. Then

inf
x∈Rn

f(x) = −f∗(0̄)
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(0̄,−1) specifies precisely the hyperplane parallel to the n-dimensional domain of f so the theorem intu-
itively makes sense. The proof is also easy:

Proof.

−f∗(0̄) = −
(

sup
x∈Rn

xT0̄− f(x)

)
(3.3)

= inf
x∈Rn

f(x) (3.4)

Taking the conjugate dual of convex functions is a sensitive operation. For instance, (f + g)∗ 6= f∗ + g∗.

Theorem 6. Let f, g : Rn → R ∪ {∞} be closed-proper-convex functions. Then

(f + g)∗(y) = inf
u,w∈Rn:u+w=y

f∗(u) + g∗(w)

Hand-wavily, we can see that this theorem is natural because ∂(f + g) = ∂f + ∂g. So we can form one
subgradient of f + g by taking many different sums of a subgradient of f and a subgradient at g.

Proof. First, we recall that if f is closed-proper-convex, then f∗∗ = f . Hence:

(f + g)∗(y) = sup
x∈Rn

xTy − f(x)− g(x) (3.5)

= sup
x∈Rn

xTy − f∗∗(x)− g∗∗(x) (3.6)

= sup
x∈Rn

xTy −
(

sup
u∈Rn

uTx− f∗(u)

)
−
(

sup
w∈Rn

wTx− g∗(w)

)
(3.7)

In general, we know that − supx f(x) = infx−f(x). Hence we can continue:

(f + g)∗(y) = sup
x∈Rn

xTy +

(
inf
u∈Rn

−uTx+ f∗(u)

)
+

(
inf
w∈Rn

−wTx+ g∗(w)

)
(3.8)

= sup
x∈Rn

inf
u,w∈Rn

xTy − uTx− wTx+ f∗(u) + g∗(w) (3.9)

= sup
x∈Rn

inf
u,w∈Rn

xT(y − (u+ w)) + f∗(u) + g∗(w) (3.10)

Let u′, w′ minimize infu,w∈Rn xT(y− (u+w)) + f∗(u) + g∗(w) (to be fully rigorous, we cannot assume such
u′, w′ exist). Suppose also that (y − (u′ + w′)) 6= 0̄. Then supx∈Rn xT(y − (u′ + w′)) + f∗(u) + g∗(w) is
infinity because as we increase magnitude of x, we can make xT(y − (u′ + w′)) arbitrarily large while f∗(u)
and g∗(w) do not change. Thus, it must be that (y − (u′ + w′) = 0̄ and we can argue:

(f + g)∗(y) = sup
x∈Rn

inf
u,w∈Rn:u+w=y

xT0̄ + f∗(u) + g∗(w) (3.11)

= inf
u,w∈Rn:u+w=y

f∗(u) + g∗(w) (3.12)
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We can now derive Fenchel Duality Theorem as a corollary:

Corollary 7. (Fenchel Duality Theorem)
Let f, g : Rn → R ∪ {∞} be closed-proper-convex functions. Then:

inf
x∈Rn

(f + g)(x) = −(f + g)∗(0̄) (3.13)

= −( inf
λ∈Rn

f∗(λ) + g∗(−λ)) (3.14)

= sup
λ∈Rn

−f∗(λ)− f∗(−λ) (3.15)

4 Connecting Subgradient and Conjugate Dual
There is an interesting connection between subgradient of the conjugate dual function and the subgradient of
the original function.

Theorem 8. (Dual Subgradient Theorem)
Let f : Rn → R ∪ {∞} be a proper convex function. Let f∗ be its conjugate dual. Then for all x0, y0 ∈ Rn:

y0 ∈ ∂f(x0) if and only if x0 ∈ ∂f∗(y0)

This theorem says that “gradient” and “position” switches role for the conjugate dual. If f has gradient y0
at position x0, then f∗ has gradient x0 at position y0.

To get an intuition for this theorem, let us consider the case where x0 = 0̄ and let us suppose f(0̄) = 0
and f has subgradient y0 at x0 = 0̄. In this case, the Dual Subgradient Theorem says that 0̄ ∈ ∂f∗(y0) which
means that f∗ achieves its minimum at y0.

Why is this so? If f(0̄) = 0, then the origin in the n + 1-dimensional space lies at the boundary of the
epigraph of f . Hence, the hyperplane passing through origin with normal vector (y0,−1) is the the supporting
hyperplane of the epigraph and it touches the epigraph at the origin. If we change y0 by a bit, the hyperplane
will “cut” into the epigraph and hence increase the value of f∗.

We can see this intuition appear in the proof as well:

Proof. (Dual Subgradient Theorem)
Step 1: We will first prove this for case where x0 = 0̄ and f(0̄) = 0. Let y0 ∈ ∂f(0̄), then for all x ∈ Rn:

f(x) ≥ yT0 (x− x0) + f(x0) (4.1)

0 ≥ yT0 x− f(x) (4.2)

0 ≥ sup
x∈Rn

yT0 x− f(x) (4.3)

0 ≥ f∗(y0) (4.4)

On the other hand, f∗(y) = supx∈Rn yTx− f(x) ≥ yTx0 − f(x0) ≥ 0. Hence, f∗ is minimized at y0 and
0̄ ∈ ∂f∗(y0). We can reverse the reasoning to prove the converse.
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Step 2: now we prove the theorem for the general case. Suppose y0 ∈ ∂f(x0). Define function g(x) =
f(x + x0) − f(x0) (note that f(x0) < ∞ since f has subgradient at x0). Then we see that g(0̄) = 0 and
∂g(0̄) = ∂f(x0). Hence, y0 ∈ ∂f(x0) if and only if y0 ∈ ∂g(0̄). By step 1, we know that 0̄ ∈ ∂g∗(y0) and so
we need to relate ∂g∗ to ∂f∗

g∗(y0) = sup
x∈Rn

xTy0 − g(x) (4.5)

= sup
x∈Rn

xTy0 − f(x+ x0) + f(x0) (4.6)

= sup
x∈Rn

(x+ x0)Ty0 − f(x+ x0)− xT0 y0 + f(x0) (4.7)

= f∗(y0)− xT0 y0 + f(x0) (4.8)

Hence, ∂g∗(y0) = ∂f∗(y0)− x0 and we see that 0̄ ∈ ∂g∗(y0) is equivalent to x0 ∈ ∂f∗(y0).

We see then that the original function, the conjugate dual, and the subgradient have the following interesting
connection:

• Finding the minimum value of f is equivalent to evaluating f∗ at 0̄.

inf
x
f(x) = −f∗(0̄)

• Finding x that achieves minimum value of f is equivalent to finding the subgradient of f∗ at 0̄.

0̄ ∈ ∂f(x) if and only if x ∈ ∂f∗(0̄)
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