SML Recitation Notes Week 2: Convexity

Min Xu

January 21, 2011

1 Geometry Fundamentals

We can describe a hyperplane in \mathbb{R}^d as a normal vector $h \in \mathbb{R}^d$ and an offset $x_0 \in \mathbb{R}^d$.

- If x is on the plane, then $h^{\mathsf{T}}(x x_0) = 0$
- If x is on one side of the plane, then $h^{\mathsf{T}}(x-x_0)>0$
- If x is on the other side, then $h^{\mathsf{T}}(x-x_0) < 0$
- ullet we can multiply h by non-zero scalar and still describe the same plane
- Since $h^{\mathsf{T}}x = h^{\mathsf{T}}x_0$ for all x on the plane, we can change our offset to be another point x_0' on the plane and still describe the same plane

Theorem 1. (Supporting Hyperplane Theorem)

Let $X \subset \mathbb{R}^d$ be a convex set. Let $x_0 \in boundary(X)$, then there exist a hyperplane $H = \{x \in \mathbb{R}^d : h^\mathsf{T}(x - x_0) = 0\}$ with normal vector $h \in \mathbb{R}^d$ and offset $x_0 \in X$ such that $h^\mathsf{T}(x - x_0) \geq 0$ for all $x \in X$.

Intuitively, this means that the supporting hyperplane touches the convex set but never crosses it; the entire convex set is on the same side of the hyperplane.

Remark 1. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a convex function, then the **epigraph** of f is the set of n+1-dimensional points $\{(x,z): x \in \mathbb{R}^n, z \in \mathbb{R}, z \geq f(x)\}$. The epigraph is a **convex set**. The boundary of the epigraph is the set of n+1-dimensional points $\{(x,f(x))\}$; this is **graph** of f.

2 Geometry of Subgradient

Definition 2. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a convex function.

Let
$$w \in \mathbb{R}^n$$
, we say $w \in \partial f(x_0)$ if for all $x \in \mathbb{R}^n$, $f(x) \ge w^{\mathsf{T}}(x - x_0) + f(x_0)$

Geometrically, the subgradient of f at x_0 forms a supporting hyperplane of the epigraph of f at x_0 . We can see this with a little algebra:

$$f(x) \le w^{\mathsf{T}}(x - x_0) + f(x_0)$$
 (2.1)

$$w^{\mathsf{T}}x_0 - f(x_0) \le w^{\mathsf{T}}x - f(x)$$
 (2.2)

$$(w, -1)^{\mathsf{T}}(x_0, f(x_0)) \le (w, -1)^{\mathsf{T}}(x, f(x)) \tag{2.3}$$

Since $(w, -1)^T(x_0, f(x_0)) \le (w, -1)^T(x, f(x))$ for all x, the n+1-dimensional plane specified by normal vector (w, -1) and offset $(x_0, f(x_0))$ is a supporting hyperplane for the epigraph.

Similarly, any supporting hyperplane of epigraph at offset $(x_0, f(x_0))$ with normal vector (w, -1) (possibly need scaling) specifies a subgradient of f at x_0 . By the supporting hyperplane theorem, $\partial f(x_0)$ is non-empty for all x_0 such that $f(x_0) \neq \infty$.

Theorem 3. A convex function f is minimized at x_0 if and only if $\bar{0} \in \partial f(x_0)$.

A direct proof is easy, but we can also intuitively confirm this theorem by considering subgradient as supporting hyperplane.

Remark 2. (A Quick Digression into Infinity)

Let f be a convex function. If $f(x_0) = -\infty$ and $f(x_1)$ is finite, then $f(tx_0 + (1-t)x_1) \le tf(x_0) + (1-t)f(x_1) \le -\infty$ and so f can only be finite on a scattered set of points. Thus, we generally assume convex functions are proper, i.e., cannot be $-\infty$ anywhere and cannot be ∞ everywhere.

In contrast, a lot of important convex functions will map points to ∞ ; we must take special care however when f is infinity. For example, if $f(x_0) = \infty$ and f is finite somewhere else, then f does not have a subgradient at x_0 .

3 Geometry of Conjugate Dual

Definition 4. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a proper convex function. The conjugate dual is a function $f^*: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ defined as

$$f^*(y) = \sup_{x \in \mathbb{R}^n} x^\mathsf{T} y - f(x)$$

Suppose $\sup_{x \in \mathbb{R}^n} x^\mathsf{T} y - f(x)$ is achieved at x_0 , then

$$x_0^{\mathsf{T}} y - f(x_0) \ge x^{\mathsf{T}} y - f(x) \text{ for all } x \in \mathbb{R}^n$$
 (3.1)

$$f(x) \ge y^{\mathsf{T}}(x - x_0) + f(x_0)$$
 (3.2)

And so $y \in \partial f(x_0)$. We can reverse the reasoning to show that if $y \in \partial f(x_0)$, then $\sup_{x \in \mathbb{R}^n} x^\mathsf{T} y - f(x)$ will be achieved at x_0 .

We can now think about conjugate dual geometrically. Given a plane passing through origin with normal vector (y, -1), $f^*(y)$ is the distance we have to shift this plane up and down until this plane becomes a supporting hyperplane of f. $f^*(y)$ is negative if we have to shift the plane up, positive if we shift the plane down.

Remark 3. There are cases where $\sup_{x \in \mathbb{R}^n} x^\mathsf{T} y - f(x)$ is not achieved at any $x_0 \in \mathbb{R}^n$. For example, it might be that $x^\mathsf{T} y - f(x)$ increases as x gets farther and farther away and $f^*(y) = \infty$. As another less important example, it might be that the gradient of f levels off as x goes to infinity.

Theorem 5. (Dual at Zero Theorem)

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a proper convex function. Then

$$\inf_{x \in \mathbb{R}^n} f(x) = -f^*(\bar{0})$$

 $(\bar{0}, -1)$ specifies precisely the hyperplane parallel to the n-dimensional domain of f so the theorem intuitively makes sense. The proof is also easy:

Proof.

$$-f^*(\bar{0}) = -\left(\sup_{x \in \mathbb{R}^n} x^\mathsf{T} \bar{0} - f(x)\right) \tag{3.3}$$

$$=\inf_{x\in\mathbb{R}^n}f(x)\tag{3.4}$$

Taking the conjugate dual of convex functions is a sensitive operation. For instance, $(f+g)^* \neq f^* + g^*$.

Theorem 6. Let $f, g : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be closed-proper-convex functions. Then

$$(f+g)^*(y) = \inf_{u,w \in \mathbb{R}^n : u+w=y} f^*(u) + g^*(w)$$

Hand-wavily, we can see that this theorem is natural because $\partial(f+g)=\partial f+\partial g$. So we can form one subgradient of f + g by taking many different sums of a subgradient of f and a subgradient at g.

Proof. First, we recall that if f is closed-proper-convex, then $f^{**} = f$. Hence:

$$(f+g)^*(y) = \sup_{x \in \mathbb{R}^n} x^{\mathsf{T}} y - f(x) - g(x)$$
(3.5)

$$= \sup_{x \in \mathbb{R}^n} x^{\mathsf{T}} y - f^{**}(x) - g^{**}(x) \tag{3.6}$$

$$= \sup_{x \in \mathbb{R}^n} x^{\mathsf{T}} y - \left(\sup_{u \in \mathbb{R}^n} u^{\mathsf{T}} x - f^*(u) \right) - \left(\sup_{w \in \mathbb{R}^n} w^{\mathsf{T}} x - g^*(w) \right)$$
(3.7)

In general, we know that $-\sup_x f(x) = \inf_x -f(x)$. Hence we can continue:

$$(f+g)^{*}(y) = \sup_{x \in \mathbb{R}^{n}} x^{\mathsf{T}} y + \left(\inf_{u \in \mathbb{R}^{n}} -u^{\mathsf{T}} x + f^{*}(u) \right) + \left(\inf_{w \in \mathbb{R}^{n}} -w^{\mathsf{T}} x + g^{*}(w) \right)$$
(3.8)

$$= \sup_{x \in \mathbb{R}^n} \inf_{u, w \in \mathbb{R}^n} x^{\mathsf{T}} y - u^{\mathsf{T}} x - w^{\mathsf{T}} x + f^*(u) + g^*(w)$$
(3.9)

$$= \sup_{x \in \mathbb{R}^n} \inf_{u, w \in \mathbb{R}^n} x^{\mathsf{T}} (y - (u + w)) + f^*(u) + g^*(w)$$
(3.10)

Let u',w' minimize $\inf_{u,w\in\mathbb{R}^n}x^\mathsf{T}(y-(u+w))+f^*(u)+g^*(w)$ (to be fully rigorous, we cannot assume such u',w' exist). Suppose also that $(y-(u'+w'))\neq \bar{0}$. Then $\sup_{x\in\mathbb{R}^n}x^\mathsf{T}(y-(u'+w'))+f^*(u)+g^*(w)$ is infinity because as we increase magnitude of x, we can make $x^\mathsf{T}(y-(u'+w'))$ arbitrarily large while $f^*(u)$ and $g^*(w)$ do not change. Thus, it must be that $(y - (u' + w')) = \bar{0}$ and we can argue:

$$(f+g)^{*}(y) = \sup_{x \in \mathbb{R}^{n}} \inf_{u,w \in \mathbb{R}^{n}: u+w=y} x^{\mathsf{T}} \bar{0} + f^{*}(u) + g^{*}(w)$$

$$= \inf_{u,w \in \mathbb{R}^{n}: u+w=y} f^{*}(u) + g^{*}(w)$$
(3.11)

$$= \inf_{u,w \in \mathbb{R}^n: u+w=u} f^*(u) + g^*(w)$$
 (3.12)

We can now derive Fenchel Duality Theorem as a corollary:

Corollary 7. (Fenchel Duality Theorem)

Let $f, g : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be closed-proper-convex functions. Then:

$$\inf_{x \in \mathbb{R}^n} (f+g)(x) = -(f+g)^*(\bar{0}) \tag{3.13}$$

$$= -(\inf_{\lambda \in \mathbb{R}^n} f^*(\lambda) + g^*(-\lambda)) \tag{3.14}$$

$$= \sup_{\lambda \in \mathbb{R}^n} -f^*(\lambda) - f^*(-\lambda) \tag{3.15}$$

4 Connecting Subgradient and Conjugate Dual

There is an interesting connection between subgradient of the conjugate dual function and the subgradient of the original function.

Theorem 8. (Dual Subgradient Theorem)

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a proper convex function. Let f^* be its conjugate dual. Then for all $x_0, y_0 \in \mathbb{R}^n$:

$$y_0 \in \partial f(x_0)$$
 if and only if $x_0 \in \partial f^*(y_0)$

This theorem says that "gradient" and "position" switches role for the conjugate dual. If f has gradient y_0 at position x_0 , then f^* has gradient x_0 at position y_0 .

To get an intuition for this theorem, let us consider the case where $x_0 = \bar{0}$ and let us suppose $f(\bar{0}) = 0$ and f has subgradient y_0 at $x_0 = \bar{0}$. In this case, the Dual Subgradient Theorem says that $\bar{0} \in \partial f^*(y_0)$ which means that f^* achieves its minimum at y_0 .

Why is this so? If $f(\overline{0}) = 0$, then the origin in the n + 1-dimensional space lies at the boundary of the epigraph of f. Hence, the hyperplane passing through origin with normal vector $(y_0, -1)$ is the the supporting hyperplane of the epigraph and it touches the epigraph at the origin. If we change y_0 by a bit, the hyperplane will "cut" into the epigraph and hence increase the value of f^* .

We can see this intuition appear in the proof as well:

Proof. (Dual Subgradient Theorem)

Step 1: We will first prove this for case where $x_0 = \bar{0}$ and $f(\bar{0}) = 0$. Let $y_0 \in \partial f(\bar{0})$, then for all $x \in \mathbb{R}^n$:

$$f(x) \ge y_0^{\mathsf{T}}(x - x_0) + f(x_0) \tag{4.1}$$

$$0 \ge y_0^\mathsf{T} x - f(x) \tag{4.2}$$

$$0 \ge \sup_{x \in \mathbb{R}^n} y_0^\mathsf{T} x - f(x) \tag{4.3}$$

$$0 \ge f^*(y_0) \tag{4.4}$$

On the other hand, $f^*(y) = \sup_{x \in \mathbb{R}^n} y^\mathsf{T} x - f(x) \ge y^\mathsf{T} x_0 - f(x_0) \ge 0$. Hence, f^* is minimized at y_0 and $\bar{0} \in \partial f^*(y_0)$. We can reverse the reasoning to prove the converse.

Step 2: now we prove the theorem for the general case. Suppose $y_0 \in \partial f(x_0)$. Define function $g(x) = f(x+x_0) - f(x_0)$ (note that $f(x_0) < \infty$ since f has subgradient at x_0). Then we see that $g(\bar{0}) = 0$ and $\partial g(\bar{0}) = \partial f(x_0)$. Hence, $y_0 \in \partial f(x_0)$ if and only if $y_0 \in \partial g(\bar{0})$. By step 1, we know that $\bar{0} \in \partial g^*(y_0)$ and so we need to relate ∂g^* to ∂f^*

$$g^*(y_0) = \sup_{x \in \mathbb{R}^n} x^{\mathsf{T}} y_0 - g(x)$$
 (4.5)

$$= \sup_{x \in \mathbb{R}^n} x^{\mathsf{T}} y_0 - f(x + x_0) + f(x_0)$$
 (4.6)

$$= \sup_{x \in \mathbb{R}^n} (x + x_0)^\mathsf{T} y_0 - f(x + x_0) - x_0^\mathsf{T} y_0 + f(x_0)$$
(4.7)

$$= f^*(y_0) - x_0^\mathsf{T} y_0 + f(x_0) \tag{4.8}$$

Hence,
$$\partial g^*(y_0) = \partial f^*(y_0) - x_0$$
 and we see that $\bar{0} \in \partial g^*(y_0)$ is equivalent to $x_0 \in \partial f^*(y_0)$.

We see then that the original function, the conjugate dual, and the subgradient have the following interesting connection:

• Finding the minimum value of f is equivalent to evaluating f^* at $\bar{0}$.

$$\inf_{x} f(x) = -f^*(\bar{0})$$

• Finding x that achieves minimum value of f is equivalent to finding the subgradient of f^* at $\bar{0}$.

$$\bar{0} \in \partial f(x)$$
 if and only if $x \in \partial f^*(\bar{0})$